Ejemplo n.º 1
0
class ParametricActionsModel(DistributionalQTFModel):
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kw):

        print("{} : [INFO] ParametricActionsModel {}, {}, {}, {}, {}".format(
            datetime.now(), action_space, obs_space, num_outputs, name,
            model_config))

        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, **kw)
        # print("####### obs_space {}".format(obs_space))
        # raise Exception("END")

        self.action_param_model = FullyConnectedNetwork(
            FLAT_OBSERVATION_SPACE, action_space, num_outputs, model_config,
            name + "_action_param")
        self.register_variables(self.action_param_model.variables())

    def forward(self, input_dict, state, seq_lens):

        # Extract the available actions tensor from the observation.
        action_mask = input_dict["obs"]["action_mask"]

        # Compute the predicted action embedding
        action_param, _ = self.action_param_model(
            {"obs": input_dict["obs"]["state"]})

        # Mask out invalid actions (use tf.float32.min for stability)
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_param + inf_mask, state

    def value_function(self):
        return self.action_param_model.value_function()
Ejemplo n.º 2
0
class CustomTFRPGModel(TFModelV2):
    """Example of interpreting repeated observations."""

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)
        self.model = TFFCNet(obs_space, action_space, num_outputs,
                             model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        # The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS:
        # {
        #   'items', <tf.Tensor shape=(?, M, N, 5)>,
        #   'location', <tf.Tensor shape=(?, M, 2)>,
        #   'status', <tf.Tensor shape=(?, M, 10)>,
        # }
        print("The unpacked input tensors:", input_dict["obs"])
        print()
        print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim())
        print()
        if tf.executing_eagerly():
            print("Fully unbatched", input_dict["obs"].unbatch_all())
            print()
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
Ejemplo n.º 3
0
class ParametricActionsModel(DistributionalQTFModel):
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(2, ),
                 **kw):
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, **kw)
        self.action_value_model = FullyConnectedNetwork(
            Box(-1, 1, shape=true_obs_shape),
            action_space,
            num_outputs,
            model_config,
            name + "_action_values",
        )
        self.register_variables(self.action_value_model.variables())

    def forward(self, input_dict, state, seq_lens):
        action_mask = input_dict["obs"]["action_mask"]
        action_values, _ = self.action_value_model(
            {"obs": input_dict["obs"]["actual_obs"]})
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_values + inf_mask, state
Ejemplo n.º 4
0
class FCMaskedActionsModelTF(DistributionalQTFModel, TFModelV2):
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kw):
        super(FCMaskedActionsModelTF,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, **kw)
        true_obs_space = gym.spaces.MultiBinary(n=obs_space.shape[0] -
                                                action_space.n)
        self.action_embed_model = FullyConnectedNetwork(
            obs_space=true_obs_space,
            action_space=action_space,
            num_outputs=action_space.n,
            model_config=model_config,
            name=name + "action_model")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        action_mask = input_dict["obs"]["action_mask"]

        # Compute the predicted action embedding
        raw_actions, _ = self.action_embed_model(
            {"obs": input_dict["obs"]["real_obs"]})
        #inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        logits = tf.where(tf.math.equal(action_mask, 1), raw_actions,
                          tf.float32.min)
        return logits, state

    def value_function(self):
        return self.action_embed_model.value_function()
class YetAnotherCentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized value function.

    It assumes the observation is a dict with 'own_obs' and 'opponent_obs', the
    former of which can be used for computing actions (i.e., decentralized
    execution), and the latter for optimization (i.e., centralized learning).

    This model has two parts:
    - An action model that looks at just 'own_obs' to compute actions
    - A value model that also looks at the 'opponent_obs' / 'opponent_action'
      to compute the value (it does this by using the 'obs_flat' tensor).
    """

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(YetAnotherCentralizedCriticModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name)

        self.action_model = FullyConnectedNetwork(
            Box(low=0, high=1, shape=(6, )),  # one-hot encoded Discrete(6)
            action_space,
            num_outputs,
            model_config,
            name + "_action")
        self.register_variables(self.action_model.variables())

        self.value_model = FullyConnectedNetwork(obs_space, action_space, 1,
                                                 model_config, name + "_vf")
        self.register_variables(self.value_model.variables())

    def forward(self, input_dict, state, seq_lens):
        self._value_out, _ = self.value_model({
            "obs": input_dict["obs_flat"]
        }, state, seq_lens)
        return self.action_model({
            "obs": input_dict["obs"]["own_obs"]
        }, state, seq_lens)

    def value_function(self):
        return tf.reshape(self._value_out, [-1])
class CustomLossModel(TFModelV2):
    """Custom model that adds an imitation loss on top of the policy loss."""

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)

        self.fcnet = FullyConnectedNetwork(
            self.obs_space,
            self.action_space,
            num_outputs,
            model_config,
            name="fcnet")
        self.register_variables(self.fcnet.variables())

    @override(ModelV2)
    def forward(self, input_dict, state, seq_lens):
        # Delegate to our FCNet.
        return self.fcnet(input_dict, state, seq_lens)

    @override(ModelV2)
    def custom_loss(self, policy_loss, loss_inputs):
        # Create a new input reader per worker.
        reader = JsonReader(
            self.model_config["custom_model_config"]["input_files"])
        input_ops = reader.tf_input_ops()

        # Define a secondary loss by building a graph copy with weight sharing.
        obs = restore_original_dimensions(
            tf.cast(input_ops["obs"], tf.float32), self.obs_space)
        logits, _ = self.forward({"obs": obs}, [], None)

        # You can also add self-supervised losses easily by referencing tensors
        # created during _build_layers_v2(). For example, an autoencoder-style
        # loss can be added as follows:
        # ae_loss = squared_diff(
        #     loss_inputs["obs"], Decoder(self.fcnet.last_layer))
        print("FYI: You can also use these tensors: {}, ".format(loss_inputs))

        # Compute the IL loss.
        action_dist = Categorical(logits, self.model_config)
        self.policy_loss = policy_loss
        self.imitation_loss = tf.reduce_mean(
            -action_dist.logp(input_ops["actions"]))
        return policy_loss + 10 * self.imitation_loss

    def custom_stats(self):
        return {
            "policy_loss": self.policy_loss,
            "imitation_loss": self.imitation_loss,
        }
Ejemplo n.º 7
0
class CustomModel(TFModelV2):
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
Ejemplo n.º 8
0
class CustomModel(TFModelV2):
    """Example of a keras custom model that just delegates to an fc-net."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
                                          model_config, name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
Ejemplo n.º 9
0
class ParametricActionsModel(DistributionalQTFModel):
    """Parametric action model that handles the dot product and masking.

    This assumes the outputs are logits for a single Categorical action dist.
    Getting this to work with a more complex output (e.g., if the action space
    is a tuple of several distributions) is also possible but left as an
    exercise to the reader.
    """

    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(4, ),
                 action_embed_size=2,
                 **kw):
        super(ParametricActionsModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name, **kw)
        self.action_embed_model = FullyConnectedNetwork(
            Box(-1, 1, shape=true_obs_shape), action_space, action_embed_size,
            model_config, name + "_action_embed")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Extract the available actions tensor from the observation.
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]

        # Compute the predicted action embedding
        action_embed, _ = self.action_embed_model({
            "obs": input_dict["obs"]["cart"]
        })

        # Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
        # avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
        intent_vector = tf.expand_dims(action_embed, 1)

        # Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=2)

        # Mask out invalid actions (use tf.float32.min for stability)
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
class OwnershipActionMaskingModel(FullyConnectedNetwork):
    """
    Parametric action model that handles the dot product and masking.
    This assumes the outputs are logits for a single Categorical action dist.
    """
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kw):
        super(OwnershipActionMaskingModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, **kw)

        self.true_obs_shape = model_config['custom_model_config'][
            'true_obs_shape']
        self.action_embed_size = model_config['custom_model_config'][
            'action_embed_size']

        self.action_embed_model = FullyConnectedNetwork(
            self.true_obs_shape, action_space, self.action_embed_size,
            model_config, name + "_action_embed")
        # Box(-1, 0, shape=true_obs_shape)
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Extract the available actions tensor from the observation.
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]

        # Compute the predicted action embedding
        action_embed, _ = self.action_embed_model(
            {"obs": input_dict["obs"]["obs"]})

        # Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
        # avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
        intent_vector = tf.expand_dims(action_embed, 1)

        # Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=1)

        # Mask out invalid actions (use tf.float32.min for stability)
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
Ejemplo n.º 11
0
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized value function."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_obs, opp_act) -> vf_pred
        obs = tf.keras.layers.Input(shape=(6, ), name="obs")
        opp_obs = tf.keras.layers.Input(shape=(6, ), name="opp_obs")
        opp_act = tf.keras.layers.Input(shape=(2, ), name="opp_act")
        concat_obs = tf.keras.layers.Concatenate(axis=1)(
            [obs, opp_obs, opp_act])
        central_vf_dense = tf.keras.layers.Dense(16,
                                                 activation=tf.nn.tanh,
                                                 name="c_vf_dense")(concat_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(inputs=[obs, opp_obs, opp_act],
                                         outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)

    @override(ModelV2)
    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def central_value_function(self, obs, opponent_obs, opponent_actions):
        return tf.reshape(
            self.central_vf([
                obs, opponent_obs,
                tf.one_hot(tf.cast(opponent_actions, tf.int32), 2)
            ]), [-1])

    @override(ModelV2)
    def value_function(self):
        return self.model.value_function()  # not used
Ejemplo n.º 12
0
class KP0ActionMaskModel(TFModelV2):
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(11, ),
                 action_embed_size=5,
                 *args,
                 **kwargs):

        super(KP0ActionMaskModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, *args, **kwargs)

        self.action_embed_model = FullyConnectedNetwork(
            CatanatronEnv.observation_space,
            action_space,
            action_embed_size,
            model_config,
            name + "_action_embedding",
        )
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]
        action_embedding, _ = self.action_embed_model(
            {"obs": input_dict["obs"]["state"]})
        intent_vector = tf.expand_dims(action_embedding, 1)
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=1)
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()