Ejemplo n.º 1
0
# x component of force resulting from displacement in the y direction.
coeffs_xy = [lamb, mu]
diffs_xy = [(1, 1), (1, 1)]
# y component of force resulting from displacement in the x direction.
coeffs_yx = [mu, lamb]
diffs_yx = [(1, 1), (1, 1)]
# y component of force resulting from displacement in the y direction.
coeffs_yy = [lamb+2*mu, mu]
diffs_yy =  [(0, 2), (2, 0)]
# make the differentiation matrices that enforce the PDE on the 
# interior nodes.
D_xx = weight_matrix(nodes[groups['interior']], nodes, n, diffs_xx, coeffs=coeffs_xx)
D_xy = weight_matrix(nodes[groups['interior']], nodes, n, diffs_xy, coeffs=coeffs_xy)
D_yx = weight_matrix(nodes[groups['interior']], nodes, n, diffs_yx, coeffs=coeffs_yx)
D_yy = weight_matrix(nodes[groups['interior']], nodes, n, diffs_yy, coeffs=coeffs_yy)
G_xx = add_rows(G_xx, D_xx, groups['interior'])
G_xy = add_rows(G_xy, D_xy, groups['interior'])
G_yx = add_rows(G_yx, D_yx, groups['interior'])
G_yy = add_rows(G_yy, D_yy, groups['interior'])

# use the ghost nodes to enforce the PDE on the boundary
D_xx = weight_matrix(nodes[groups['boundary:free']], nodes, n, diffs_xx, coeffs=coeffs_xx)
D_xy = weight_matrix(nodes[groups['boundary:free']], nodes, n, diffs_xy, coeffs=coeffs_xy)
D_yx = weight_matrix(nodes[groups['boundary:free']], nodes, n, diffs_yx, coeffs=coeffs_yx)
D_yy = weight_matrix(nodes[groups['boundary:free']], nodes, n, diffs_yy, coeffs=coeffs_yy)
G_xx = add_rows(G_xx, D_xx, groups['ghosts:free'])
G_xy = add_rows(G_xy, D_xy, groups['ghosts:free'])
G_yx = add_rows(G_yx, D_yx, groups['ghosts:free'])
G_yy = add_rows(G_yy, D_yy, groups['ghosts:free'])

## Enforce fixed boundary conditions
Ejemplo n.º 2
0
# functions to better understand this step.
N = nodes.shape[0]
G_xx = sp.coo_matrix((N, N))
G_xy = sp.coo_matrix((N, N))
G_xz = sp.coo_matrix((N, N))

G_yx = sp.coo_matrix((N, N))
G_yy = sp.coo_matrix((N, N))
G_yz = sp.coo_matrix((N, N))

G_zx = sp.coo_matrix((N, N))
G_zy = sp.coo_matrix((N, N))
G_zz = sp.coo_matrix((N, N))

out = elastic3d_body_force(nodes[idx['interior']], nodes, n, lamb=lamb, mu=mu)
G_xx = add_rows(G_xx, out['xx'], idx['interior'])
G_xy = add_rows(G_xy, out['xy'], idx['interior'])
G_xz = add_rows(G_xz, out['xz'], idx['interior'])
G_yx = add_rows(G_yx, out['yx'], idx['interior'])
G_yy = add_rows(G_yy, out['yy'], idx['interior'])
G_yz = add_rows(G_yz, out['yz'], idx['interior'])
G_zx = add_rows(G_zx, out['zx'], idx['interior'])
G_zy = add_rows(G_zy, out['zy'], idx['interior'])
G_zz = add_rows(G_zz, out['zz'], idx['interior'])

out = elastic3d_body_force(nodes[idx['boundary:free']],
                           nodes,
                           n,
                           lamb=lamb,
                           mu=mu)
G_xx = add_rows(G_xx, out['xx'], idx['ghosts:free'])
Ejemplo n.º 3
0
z_init = np.hstack((u_init.T.flatten(), v_init.T.flatten()))

# construct a matrix that maps the displacements everywhere to the
# displacements at the interior and the boundary conditions
B_xx = sp.csc_matrix((n, n))
B_xy = sp.csc_matrix((n, n))
B_yx = sp.csc_matrix((n, n))
B_yy = sp.csc_matrix((n, n))

components = elastic2d_displacement(nodes[idx['interior']],
                                    nodes,
                                    lamb=lamb,
                                    mu=mu,
                                    n=stencil_size)
B_xx = add_rows(B_xx, components['xx'], idx['interior'])
B_yy = add_rows(B_yy, components['yy'], idx['interior'])

components = elastic2d_displacement(nodes[idx['boundary:all']],
                                    nodes,
                                    lamb=lamb,
                                    mu=mu,
                                    n=stencil_size)
B_xx = add_rows(B_xx, components['xx'], idx['boundary:all'])
B_yy = add_rows(B_yy, components['yy'], idx['boundary:all'])

components = elastic2d_surface_force(nodes[idx['boundary:all']],
                                     normals[idx['boundary:all']],
                                     nodes,
                                     lamb=lamb,
                                     mu=mu,
Ejemplo n.º 4
0
# create the "left hand side" matrix.
# create the component which evaluates the PDE
A_interior = weight_matrix(nodes[groups['interior']],
                           nodes,
                           n,
                           diffs=[[2, 0], [0, 2]],
                           phi=phi,
                           order=order)
# create the component for the fixed boundary conditions
A_boundary = weight_matrix(nodes[groups['boundary:all']],
                           nodes,
                           1,
                           diffs=[0, 0])
# Add the components to the corresponding rows of `A`
A = coo_matrix((N, N))
A = add_rows(A, A_interior, groups['interior'])
A = add_rows(A, A_boundary, groups['boundary:all'])

# create "right hand side" vector
d = np.zeros((N, ))
d[groups['interior']] = -1.0
d[groups['boundary:all']] = 0.0

# find the solution at the nodes
u_soln = spsolve(A, d)

# Create a grid for interpolating the solution
xg, yg = np.meshgrid(np.linspace(0.0, 2.02, 100), np.linspace(0.0, 2.02, 100))
points = np.array([xg.flatten(), yg.flatten()]).T

# We can use any method of scattered interpolation (e.g.,
Ejemplo n.º 5
0
# normal vectors on the free surface (i.e., n_x * du/dx + n_y * du/dy)
A_free = weight_matrix(nodes[groups['boundary:free']],
                       nodes,
                       n,
                       diffs=[[1, 0], [0, 1]],
                       coeffs=[
                           normals[groups['boundary:free'], 0],
                           normals[groups['boundary:free'], 1]
                       ],
                       phi=phi,
                       order=order)

# Add the components to the corresponding rows of `A`
N = nodes.shape[0]
A = coo_matrix((N, N))
A = add_rows(A, A_interior, groups['interior'])
A = add_rows(A, A_ghost, groups['ghosts:free'])
A = add_rows(A, A_fixed, groups['boundary:fixed'])
A = add_rows(A, A_free, groups['boundary:free'])

# create "right hand side" vector
d = np.zeros((N, ))
d[groups['interior']] = -1.0
d[groups['ghosts:free']] = -1.0
d[groups['boundary:fixed']] = 0.0
d[groups['boundary:free']] = 0.0

# find the solution at the nodes
u_soln = spsolve(A, d)
error = np.abs(u_soln - series_solution(nodes))