def evaluate(): for t, pixels in enumerate(testset): if pixels is None: continue estimate = unflatten(rbm.reconstruct(flatten(pixels))) errors[t].append(((pixels - estimate)**2).mean()) report = ' : '.join('%d' % mean(errors[t]) for t in range(10)) r = numpy.array(recent) logging.error('%d<%.3g>: %.3g+%.3g: %s', batches, opts.alpha * numpy.exp(-batches / opts.tau), r.mean(axis=0).mean(), r.std(axis=0).mean(), report)
def evaluate(): for t, pixels in enumerate(testset): if pixels is None: continue estimate = unflatten(rbm.reconstruct(flatten(pixels))) errors[t].append(((pixels - estimate) ** 2).mean()) report = " : ".join("%d" % mean(errors[t]) for t in range(10)) r = numpy.array(recent) logging.error( "%d<%.3g>: %.3g+%.3g: %s", batches, opts.alpha * numpy.exp(-batches / opts.tau), r.mean(axis=0).mean(), r.std(axis=0).mean(), report, )
def reconstruct(weights, hid_states): for i in range(len(weights) + 1)[1:]: hid_states = rbm.reconstruct(weights[-i], hid_states) return hid_states
def reconstruct(weights, hid_states): for i in range(len(weights)+1)[1:]: hid_states = rbm.reconstruct(weights[-i], hid_states) return hid_states