Ejemplo n.º 1
0
 def solve(self):
     from rbnics.backends import AffineExpansionStorage, evaluate, LinearSolver, product, sum
     assert self._lhs is not None
     assert self._solution is not None
     assert isinstance(self._rhs, DelayedSum)
     thetas = list()
     operators = list()
     for addend in self._rhs._args:
         assert isinstance(addend, DelayedProduct)
         assert len(addend._args) in (2, 3)
         assert isinstance(addend._args[0], Number)
         assert isinstance(addend._args[1],
                           AbstractParametrizedTensorFactory)
         thetas.append(addend._args[0])
         if len(addend._args) is 2:
             operators.append(addend._args[1])
         elif len(addend._args) is 3:
             operators.append(addend._args[1] * addend._args[2])
         else:
             raise ValueError("Invalid addend")
     thetas = tuple(thetas)
     operators = AffineExpansionStorage(
         tuple(evaluate(op) for op in operators))
     rhs = sum(product(thetas, operators))
     solver = LinearSolver(self._lhs, self._solution, rhs, self._bcs)
     solver.set_parameters(self._parameters)
     solver.solve()
Ejemplo n.º 2
0
 def solve(self, rhs: object):
     problem = self.problem
     solver = LinearSolver(
         problem._riesz_solve_inner_product,
         problem._riesz_solve_storage, rhs,
         problem._riesz_solve_homogeneous_dirichlet_bc)
     solver.set_parameters(problem._linear_solver_parameters)
     solver.solve()
     return problem._riesz_solve_storage
Ejemplo n.º 3
0
 def solve(self, rhs: object):
     problem = self.problem
     args = (problem._riesz_solve_inner_product,
             problem._riesz_solve_storage, rhs,
             problem._riesz_solve_homogeneous_dirichlet_bc)
     if not self.delay:
         solver = LinearSolver(*args)
         solver.set_parameters(problem._linear_solver_parameters)
         solver.solve()
         return problem._riesz_solve_storage
     else:
         solver = DelayedLinearSolver(*args)
         solver.set_parameters(problem._linear_solver_parameters)
         return solver
Ejemplo n.º 4
0
 def _solve(self, N, **kwargs):
     EllipticCoerciveReducedProblem_DerivedClass._solve(
         self, N, **kwargs)
     if kwargs["online_rectification"]:
         q = self.online_solve_kwargs_with_rectification.index(kwargs)
         intermediate_solution = OnlineFunction(N)
         solver = LinearSolver(
             self.operator["projection_reduced_snapshots"][:N, :N][q],
             intermediate_solution, self._solution.vector())
         solver.set_parameters(self._linear_solver_parameters)
         solver.solve()
         self._solution.vector(
         )[:] = self.operator["projection_truth_snapshots"][:N, :N][
             0] * intermediate_solution
Ejemplo n.º 5
0
 def _solve_supremizer(self, solution):
     assert len(self.inner_product["s"]) == 1 # the affine expansion storage contains only the inner product matrix
     assembled_operator_lhs = self.inner_product["s"][0]
     assembled_operator_bt = sum(product(self.compute_theta("bt_restricted"), self.operator["bt_restricted"]))
     assembled_operator_rhs = assembled_operator_bt*solution
     if self.dirichlet_bc["s"] is not None:
         assembled_dirichlet_bc = sum(product(self.compute_theta("dirichlet_bc_s"), self.dirichlet_bc["s"]))
     else:
         assembled_dirichlet_bc = None
     solver = LinearSolver(
         assembled_operator_lhs,
         self._supremizer,
         assembled_operator_rhs,
         assembled_dirichlet_bc
     )
     solver.set_parameters(self._linear_solver_parameters)
     solver.solve()
 def _solve(self, N, **kwargs):
     # Temporarily change value of stabilized attribute in truth problem
     bak_stabilized = self.truth_problem.stabilized
     self.truth_problem.stabilized = kwargs["online_stabilization"]
     # Solve reduced problem
     if kwargs["online_vanishing_viscosity"]:
         assembled_operator = dict()
         assembled_operator["a"] = (
             sum(product(self.compute_theta("a"), self.operator["a"][:N, :N])) +
             self.operator["vanishing_viscosity"][:N, :N][0]
         )
         assembled_operator["f"] = sum(product(self.compute_theta("f"), self.operator["f"][:N]))
         self._solution = OnlineFunction(N)
         solver = LinearSolver(assembled_operator["a"], self._solution, assembled_operator["f"])
         solver.set_parameters(self._linear_solver_parameters)
         solver.solve()
     else:
         EllipticCoerciveReducedProblem_DerivedClass._solve(self, N, **kwargs)
     # Restore original value of stabilized attribute in truth problem
     self.truth_problem.stabilized = bak_stabilized
Ejemplo n.º 7
0
 def solve(self):
     problem = self.problem
     solver = LinearSolver(self.matrix_eval(), problem._solution,
                           self.vector_eval(), self.bc_eval())
     solver.set_parameters(problem._linear_solver_parameters)
     solver.solve()
Ejemplo n.º 8
0
 def solve(self):
     problem = self.problem
     solver = LinearSolver(self, problem._solution)
     solver.set_parameters(problem._linear_solver_parameters)
     solver.solve()
Ejemplo n.º 9
0
 def assemble_operator(self, term, current_stage="online"):
     if term == "projection_truth_snapshots":
         assert current_stage in (
             "online", "offline_rectification_postprocessing")
         if current_stage == "online":  # load from file
             self.operator["projection_truth_snapshots"].load(
                 self.folder["reduced_operators"],
                 "projection_truth_snapshots")
             return self.operator["projection_truth_snapshots"]
         elif current_stage == "offline_rectification_postprocessing":
             assert len(
                 self.truth_problem.inner_product
             ) == 1  # the affine expansion storage contains only the inner product matrix
             inner_product = self.truth_problem.inner_product[0]
             for n in range(1, self.N + 1):
                 assert len(
                     self.inner_product
                 ) == 1  # the affine expansion storage contains only the inner product matrix
                 inner_product_n = self.inner_product[:n, :n][0]
                 basis_functions_n = self.basis_functions[:n]
                 projection_truth_snapshots_expansion = OnlineAffineExpansionStorage(
                     1)
                 projection_truth_snapshots = OnlineMatrix(n, n)
                 for (i, snapshot_i) in enumerate(self.snapshots[:n]):
                     projected_truth_snapshot_i = OnlineFunction(n)
                     solver = LinearSolver(
                         inner_product_n, projected_truth_snapshot_i,
                         transpose(basis_functions_n) * inner_product *
                         snapshot_i)
                     solver.set_parameters(
                         self._linear_solver_parameters)
                     solver.solve()
                     for j in range(n):
                         projection_truth_snapshots[
                             j,
                             i] = projected_truth_snapshot_i.vector()[j]
                 projection_truth_snapshots_expansion[
                     0] = projection_truth_snapshots
                 print("\tcondition number for n = " + str(n) + ": " +
                       str(cond(projection_truth_snapshots)))
                 self.operator[
                     "projection_truth_snapshots"][:n, :
                                                   n] = projection_truth_snapshots_expansion
             # Save
             self.operator["projection_truth_snapshots"].save(
                 self.folder["reduced_operators"],
                 "projection_truth_snapshots")
             return self.operator["projection_truth_snapshots"]
         else:
             raise ValueError("Invalid stage in assemble_operator().")
     elif term == "projection_reduced_snapshots":
         assert current_stage in (
             "online", "offline_rectification_postprocessing")
         if current_stage == "online":  # load from file
             self.operator["projection_reduced_snapshots"].load(
                 self.folder["reduced_operators"],
                 "projection_reduced_snapshots")
             return self.operator["projection_reduced_snapshots"]
         elif current_stage == "offline_rectification_postprocessing":
             # Backup mu
             bak_mu = self.mu
             # Prepare rectification for all possible online solve arguments
             for n in range(1, self.N + 1):
                 print("\tcondition number for n = " + str(n))
                 projection_reduced_snapshots_expansion = OnlineAffineExpansionStorage(
                     len(self.online_solve_kwargs_without_rectification)
                 )
                 for (q, online_solve_kwargs) in enumerate(
                         self.online_solve_kwargs_without_rectification
                 ):
                     projection_reduced_snapshots = OnlineMatrix(n, n)
                     for (i, mu_i) in enumerate(self.snapshots_mu[:n]):
                         self.set_mu(mu_i)
                         projected_reduced_snapshot_i = self.solve(
                             n, **online_solve_kwargs)
                         for j in range(n):
                             projection_reduced_snapshots[
                                 j,
                                 i] = projected_reduced_snapshot_i.vector(
                                 )[j]
                     projection_reduced_snapshots_expansion[
                         q] = projection_reduced_snapshots
                     print("\t\tonline solve options " + str(
                         dict(self.
                              online_solve_kwargs_with_rectification[q])
                     ) + ": " + str(cond(projection_reduced_snapshots)))
                 self.operator[
                     "projection_reduced_snapshots"][:n, :
                                                     n] = projection_reduced_snapshots_expansion
             # Save and restore previous mu
             self.set_mu(bak_mu)
             self.operator["projection_reduced_snapshots"].save(
                 self.folder["reduced_operators"],
                 "projection_reduced_snapshots")
             return self.operator["projection_reduced_snapshots"]
         else:
             raise ValueError("Invalid stage in assemble_operator().")
     else:
         return EllipticCoerciveReducedProblem_DerivedClass.assemble_operator(
             self, term, current_stage)