def main(): ''' spinup.ppo(env_fn, actor_critic=<function mlp_actor_critic>, ac_kwargs={}, seed=0, steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=0.0003, vf_lr=0.001, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000, target_kl=0.01, logger_kwargs={}, save_freq=10) ''' parser = base_argparser() parser.add_argument("--pi_lr", type=float, default=0.0003) parser.add_argument("--vf_lr", type=float, default=0.001) parser.add_argument("--train_iters", type=int, default=80) parser.add_argument("--clip_ratio", type=float, default=0.2) parser.add_argument("--lam", type=float, default=0.97) parser.add_argument("--target_kl", type=float, default=0.01) args = parser.parse_args() # scale_hypers(args) args.start_steps = 0 if args.test: test(args) else: if args.remote: name = '-'.join([*args.exp_name.split('_'), str(args.seed)]) meta.call( backend=args.backend, fn=train, kwargs=dict(args=args), log_relpath=name, job_name=name, update=args.update, num_gpu=0, ) else: train(args)
def main(): parser = argparse.ArgumentParser() parser.add_argument('backend') parser.add_argument('--cluster', type=str, default='ibis', help='name of cluster') args = parser.parse_args() kwargs_dict = vars(args) if args.backend == 'interactive': run(**kwargs_dict) else: meta.call( backend='kube', cluster=args.cluster, fn=run, kwargs=kwargs_dict, job_name='cs231n-cifar10', log_relpath=f'hp-{datetime.now().strftime("%Y%m%d%H%M")}', num_cpu='1', num_gpu='8', mpi_machines=1, mpi_proc_per_machine='num_gpu', )
def main(): ''' spinup.sac(env_fn, actor_critic=<function mlp_actor_critic>, ac_kwargs={}, seed=0, steps_per_epoch=5000, epochs=100, replay_size=1000000, gamma=0.99, polyak=0.995, lr=0.001, alpha=0.2, batch_size=100, start_steps=10000, max_ep_len=1000, logger_kwargs={}, save_freq=1) ''' parser = base_argparser() parser.add_argument("--polyak", type=float, default=0.995) parser.add_argument("--alpha", type=float, default=0.2) args = parser.parse_args() scale_hypers(args) if args.test: test(args) else: if args.remote: name = '-'.join([*args.exp_name.split('_')]) meta.call( backend=args.backend, fn=train, kwargs=dict(args=args), log_relpath=name, job_name=name, update=args.update, num_gpu=0, num_cpu=args.ncpu, ) else: train(args)
# log_relpath='atlas_%s' % datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%s'), # num_cpu='auto', # mpi_proc_per_machine=8, # mpi_machines=1, # num_gpu=8) for op_x in ["mixed3a", "mixed3b", "mixed4a", "mixed4b", "mixed4c", "mixed4d", "mixed5a", "mixed5b"]: for op_y in ["mixed3a", "mixed3b", "mixed4a", "mixed4b", "mixed4c", "mixed4d", "mixed5a", "mixed5b"]: import json import hashlib ops = [op_x, op_y] identifier = hashlib.md5(json.dumps((model, ops)).encode('utf-8')).hexdigest() meta.call( backend=args.backend, fn=run, args = [ identifier ], log_relpath='atlas_%s' % datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%s'), num_cpu='auto', mpi_proc_per_machine=8, mpi_machines=1, num_gpu=8) # D = load("gs://clarity-public/ggoh/diff/temp1/means.json") # coordinates = D['coordinates'] # canvas = np.ones((40*A.shape[1], 40*A.shape[1],3)) # A = load("gs://clarity-public/ggoh/diff/temp1/ry.npy") # def slice_xy(x,y,img): # s = A.shape[1]
# log_relpath='atlas_%s' % datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%s'), # num_cpu='auto', # mpi_proc_per_machine=1, # mpi_machines=1, # num_gpu=1) model = ("InceptionV1", "InceptionV1") if args.backend == "interactive": ops = ("mixed3a", "mixed4c") run(model, ops) else: for op_x in [ "mixed3a", "mixed3b", "mixed4a", "mixed4b", "mixed4c", "mixed4d", "mixed5a", "mixed5b", "head0_bottleneck", "head1_bottleneck" ]: for op_y in [ "mixed3a", "mixed3b", "mixed4a", "mixed4b", "mixed4c", "mixed4d", "mixed5a", "mixed5b", "head0_bottleneck", "head1_bottleneck" ]: meta.call( backend=args.backend, fn=run, args=[model, [op_x, op_y]], log_relpath='atlas_%s' % datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%s'), num_cpu='auto', num_gpu=1)