Ejemplo n.º 1
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # setup config
    #init_config()
    #print(config)
    # setup multi-gpu

    input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)

    # print config
    logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [
        load_gt_roidb(args.dataset,
                      image_set,
                      args.root_path,
                      args.dataset_path,
                      flip=not args.no_flip) for image_set in image_sets
    ]
    #roidb = merge_roidb(roidbs)
    #roidb = filter_roidb(roidb)
    roidb = roidbs[0]

    # load symbol
    #sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    #feat_sym = sym.get_internals()['rpn_cls_score_output']
    #train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                          ctx=ctx, work_load_list=args.work_load_list,
    #                          feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
    #                          anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # load and initialize params
    sym = None
    if len(pretrained) == 0:
        arg_params = {}
        aux_params = {}
    else:
        logger.info('loading %s,%d' % (pretrained, epoch))
        sym, arg_params, aux_params = mx.model.load_checkpoint(
            pretrained, epoch)
        #arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        #for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
        #  _k = k+"_weight"
        #  if _k in arg_shape_dict:
        #    v = 0.001 if _k.startswith('bbox_') else 0.01
        #    arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
        #    print('init %s with normal %.5f'%(_k,v))
        #  _k = k+"_bias"
        #  if _k in arg_shape_dict:
        #    arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
        #    print('init %s with zero'%(_k))

    sym = eval('get_' + args.network + '_train')(sym)
    feat_sym = []
    for stride in config.RPN_FEAT_STRIDE:
        feat_sym.append(
            sym.get_internals()['face_rpn_cls_score_stride%s_output' % stride])

    train_data = CropLoader(feat_sym,
                            roidb,
                            batch_size=input_batch_size,
                            shuffle=not args.no_shuffle,
                            ctx=ctx,
                            work_load_list=args.work_load_list)

    # infer max shape
    max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    #max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
    logger.info('providing maximum shape %s %s' %
                (max_data_shape, max_label_shape))

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    logger.info('output shape %s' % pprint.pformat(out_shape_dict))

    for k, v in arg_shape_dict.items():
        if k.find('upsampling') >= 0:
            print('initializing upsampling_weight', k)
            arg_params[k] = mx.nd.zeros(shape=v)
            init = mx.init.Initializer()
            init._init_bilinear(k, arg_params[k])
            #print(args[k])

    # check parameter shapes
    #for k in sym.list_arguments():
    #    if k in data_shape_dict:
    #        continue
    #    assert k in arg_params, k + ' not initialized'
    #    assert arg_params[k].shape == arg_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    #for k in sym.list_auxiliary_states():
    #    assert k in aux_params, k + ' not initialized'
    #    assert aux_params[k].shape == aux_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    fixed_param_prefix = config.FIXED_PARAMS
    # create solver
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
    print('fixed', fixed_param_names, file=sys.stderr)
    mod = Module(sym,
                 data_names=data_names,
                 label_names=label_names,
                 logger=logger,
                 context=ctx,
                 work_load_list=args.work_load_list,
                 fixed_param_names=fixed_param_names)

    # metric
    eval_metrics = mx.metric.CompositeEvalMetric()
    mid = 0
    for m in range(len(config.RPN_FEAT_STRIDE)):
        stride = config.RPN_FEAT_STRIDE[m]
        #mid = m*MSTEP
        _metric = metric.RPNAccMetric(pred_idx=mid,
                                      label_idx=mid + 1,
                                      name='RPNAcc_s%s' % stride)
        eval_metrics.add(_metric)
        mid += 2
        #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
        #eval_metrics.add(_metric)

        _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                         weight_idx=mid + 1,
                                         name='RPNL1Loss_s%s' % stride)
        eval_metrics.add(_metric)
        mid += 2
        if config.FACE_LANDMARK:
            _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                             weight_idx=mid + 1,
                                             name='RPNLandMarkL1Loss_s%s' %
                                             stride)
            eval_metrics.add(_metric)
            mid += 2
        if config.HEAD_BOX:
            _metric = metric.RPNAccMetric(pred_idx=mid,
                                          label_idx=mid + 1,
                                          name='RPNAcc_head_s%s' % stride)
            eval_metrics.add(_metric)
            mid += 2
            #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
            #eval_metrics.add(_metric)

            _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                             weight_idx=mid + 1,
                                             name='RPNL1Loss_head_s%s' %
                                             stride)
            eval_metrics.add(_metric)
            mid += 2

    # callback
    #means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    #stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    #epoch_end_callback = callback.do_checkpoint(prefix)
    epoch_end_callback = None
    # decide learning rate
    #base_lr = lr
    #lr_factor = 0.1
    #lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))

    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr_iters = [
        int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff
    ]

    lr_steps = []
    if len(lr_iters) == 5:
        factors = [0.5, 0.5, 0.4, 0.1, 0.1]
        for i in range(5):
            lr_steps.append((lr_iters[i], factors[i]))
    elif len(lr_iters) == 8:  #warmup
        for li in lr_iters[0:5]:
            lr_steps.append((li, 1.5849))
        for li in lr_iters[5:]:
            lr_steps.append((li, 0.1))
    else:
        for li in lr_iters:
            lr_steps.append((li, 0.1))
    #lr_steps = [ (20,0.1), (40, 0.1) ] #XXX

    end_epoch = 10000
    logger.info('lr %f lr_epoch_diff %s lr_steps %s' %
                (lr, lr_epoch_diff, lr_steps))
    # optimizer
    opt = optimizer.SGD(learning_rate=lr,
                        momentum=0.9,
                        wd=0.0005,
                        rescale_grad=1.0 / len(ctx),
                        clip_gradient=None)
    initializer = mx.init.Xavier()
    #initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style

    train_data = mx.io.PrefetchingIter(train_data)

    _cb = mx.callback.Speedometer(train_data.batch_size,
                                  frequent=args.frequent,
                                  auto_reset=False)
    global_step = [0]

    def save_model(epoch):
        arg, aux = mod.get_params()
        all_layers = mod.symbol.get_internals()
        outs = []
        for stride in config.RPN_FEAT_STRIDE:
            num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
            _name = 'face_rpn_cls_score_stride%d_output' % stride
            rpn_cls_score = all_layers[_name]

            # prepare rpn data
            rpn_cls_score_reshape = mx.symbol.Reshape(
                data=rpn_cls_score,
                shape=(0, 2, -1, 0),
                name="face_rpn_cls_score_reshape_stride%d" % stride)

            rpn_cls_prob = mx.symbol.SoftmaxActivation(
                data=rpn_cls_score_reshape,
                mode="channel",
                name="face_rpn_cls_prob_stride%d" % stride)
            rpn_cls_prob_reshape = mx.symbol.Reshape(
                data=rpn_cls_prob,
                shape=(0, 2 * num_anchors, -1, 0),
                name='face_rpn_cls_prob_reshape_stride%d' % stride)
            _name = 'face_rpn_bbox_pred_stride%d_output' % stride
            rpn_bbox_pred = all_layers[_name]
            outs.append(rpn_cls_prob_reshape)
            outs.append(rpn_bbox_pred)
            if config.FACE_LANDMARK:
                _name = 'face_rpn_landmark_pred_stride%d_output' % stride
                rpn_landmark_pred = all_layers[_name]
                outs.append(rpn_landmark_pred)
        _sym = mx.sym.Group(outs)
        mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)

    def _batch_callback(param):
        #global global_step
        _cb(param)
        global_step[0] += 1
        mbatch = global_step[0]
        for step in lr_steps:
            if mbatch == step[0]:
                opt.lr *= step[1]
                print('lr change to',
                      opt.lr,
                      ' in batch',
                      mbatch,
                      file=sys.stderr)
                break

        if mbatch == lr_steps[-1][0]:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(0)
            #arg, aux = mod.get_params()
            #mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
            sys.exit(0)

    if args.checkpoint is not None:
        _, arg_params, aux_params = mx.model.load_checkpoint(
            args.checkpoint, 0)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=checkpoint_callback('model/testR50'),
            batch_end_callback=_batch_callback,
            kvstore=args.kvstore,
            optimizer=opt,
            initializer=initializer,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 2
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # setup config
    #init_config()
    #print(config)
    # setup multi-gpu

    input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)

    # print config
    logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [
        load_gt_roidb(args.dataset,
                      image_set,
                      args.root_path,
                      args.dataset_path,
                      flip=not args.no_flip) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb)

    # load symbol
    #sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    #feat_sym = sym.get_internals()['rpn_cls_score_output']
    #train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                          ctx=ctx, work_load_list=args.work_load_list,
    #                          feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
    #                          anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    sym = eval('get_' + args.network + '_train')()
    #print(sym.get_internals())
    feat_sym = []
    for stride in config.RPN_FEAT_STRIDE:
        feat_sym.append(sym.get_internals()['rpn_cls_score_stride%s_output' %
                                            stride])

    #train_data = AnchorLoaderFPN(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                              ctx=ctx, work_load_list=args.work_load_list)
    train_data = CropLoader(feat_sym,
                            roidb,
                            batch_size=input_batch_size,
                            shuffle=not args.no_shuffle,
                            ctx=ctx,
                            work_load_list=args.work_load_list)

    # infer max shape
    max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    #max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
    logger.info('providing maximum shape %s %s' %
                (max_data_shape, max_label_shape))

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    logger.info('output shape %s' % pprint.pformat(out_shape_dict))

    # load and initialize params
    if args.resume:
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        #for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
        #  _k = k+"_weight"
        #  if _k in arg_shape_dict:
        #    v = 0.001 if _k.startswith('bbox_') else 0.01
        #    arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
        #    print('init %s with normal %.5f'%(_k,v))
        #  _k = k+"_bias"
        #  if _k in arg_shape_dict:
        #    arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
        #    print('init %s with zero'%(_k))

        for k, v in arg_shape_dict.iteritems():
            if k.find('upsampling') >= 0:
                print('initializing upsampling_weight', k)
                arg_params[k] = mx.nd.zeros(shape=v)
                init = mx.init.Initializer()
                init._init_bilinear(k, arg_params[k])
                #print(args[k])

    # check parameter shapes
    #for k in sym.list_arguments():
    #    if k in data_shape_dict:
    #        continue
    #    assert k in arg_params, k + ' not initialized'
    #    assert arg_params[k].shape == arg_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    #for k in sym.list_auxiliary_states():
    #    assert k in aux_params, k + ' not initialized'
    #    assert aux_params[k].shape == aux_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    #mod = MutableModule(sym, data_names=data_names, label_names=label_names,
    #                    logger=logger, context=ctx, work_load_list=args.work_load_list,
    #                    max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
    #                    fixed_param_prefix=fixed_param_prefix)
    fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
    print('fixed', fixed_param_names, file=sys.stderr)
    mod = Module(sym,
                 data_names=data_names,
                 label_names=label_names,
                 logger=logger,
                 context=ctx,
                 work_load_list=args.work_load_list,
                 fixed_param_names=fixed_param_names)

    # decide training params
    # metric
    eval_metrics = mx.metric.CompositeEvalMetric()
    #if len(sym.list_outputs())>4:
    #  metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric', 'RCNNAccMetric', 'RCNNLogLossMetric', 'RCNNL1LossMetric']
    #else:#train rpn only
    #print('sym', sym.list_outputs())
    #metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric']
    mids = [0, 4, 8]
    for mid in mids:
        _metric = metric.RPNAccMetric(pred_idx=mid, label_idx=mid + 1)
        eval_metrics.add(_metric)
        #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
        #eval_metrics.add(_metric)
        _metric = metric.RPNL1LossMetric(loss_idx=mid + 2, weight_idx=mid + 3)
        eval_metrics.add(_metric)

    #rpn_eval_metric = metric.RPNAccMetric()
    #rpn_cls_metric = metric.RPNLogLossMetric()
    #rpn_bbox_metric = metric.RPNL1LossMetric()
    #eval_metric = metric.RCNNAccMetric()
    #cls_metric = metric.RCNNLogLossMetric()
    #bbox_metric = metric.RCNNL1LossMetric()
    #for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
    #    eval_metrics.add(child_metric)
    # callback
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    #epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
    epoch_end_callback = None
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff
    ]

    #lr_iters = [36000,42000] #TODO
    #lr_iters = [40000,50000,60000] #TODO
    #lr_iters = [40,50,60] #TODO
    end_epoch = 10000
    #lr_iters = [4,8] #TODO
    logger.info('lr %f lr_epoch_diff %s lr_iters %s' %
                (lr, lr_epoch_diff, lr_iters))
    #lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
    # optimizer
    opt = optimizer.SGD(learning_rate=lr,
                        momentum=0.9,
                        wd=0.0005,
                        rescale_grad=1.0 / len(ctx),
                        clip_gradient=None)
    initializer = mx.init.Xavier()
    #initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style

    if len(ctx) > 1:
        train_data = mx.io.PrefetchingIter(train_data)

    _cb = mx.callback.Speedometer(train_data.batch_size,
                                  frequent=args.frequent,
                                  auto_reset=False)
    global_step = [0]

    def save_model(epoch):
        arg, aux = mod.get_params()
        all_layers = mod.symbol.get_internals()
        outs = []
        for stride in config.RPN_FEAT_STRIDE:
            num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
            _name = 'rpn_cls_score_stride%d_output' % stride
            rpn_cls_score = all_layers[_name]

            # prepare rpn data
            rpn_cls_score_reshape = mx.symbol.Reshape(
                data=rpn_cls_score,
                shape=(0, 2, -1, 0),
                name="rpn_cls_score_reshape_stride%d" % stride)

            rpn_cls_prob = mx.symbol.SoftmaxActivation(
                data=rpn_cls_score_reshape,
                mode="channel",
                name="rpn_cls_prob_stride%d" % stride)
            rpn_cls_prob_reshape = mx.symbol.Reshape(
                data=rpn_cls_prob,
                shape=(0, 2 * num_anchors, -1, 0),
                name='rpn_cls_prob_reshape_stride%d' % stride)
            _name = 'rpn_bbox_pred_stride%d_output' % stride
            rpn_bbox_pred = all_layers[_name]
            outs.append(rpn_cls_prob_reshape)
            outs.append(rpn_bbox_pred)
        _sym = mx.sym.Group(outs)
        mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)

    def _batch_callback(param):
        #global global_step
        _cb(param)
        global_step[0] += 1
        mbatch = global_step[0]
        for _iter in lr_iters:
            if mbatch == _iter:
                opt.lr *= 0.1
                print('lr change to',
                      opt.lr,
                      ' in batch',
                      mbatch,
                      file=sys.stderr)
                break

        if mbatch % 1000 == 0:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(mbatch)

        if mbatch == lr_iters[-1]:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(0)
            #arg, aux = mod.get_params()
            #mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
            sys.exit(0)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=_batch_callback,
            kvstore=args.kvstore,
            optimizer=opt,
            initializer=initializer,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)