Ejemplo n.º 1
0
def train_net(image_set, year, root_path, devkit_path, pretrained, epoch,
              prefix, ctx, begin_epoch, end_epoch, frequent, kv_store, work_load_list=None, resume=False):
    # set up logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # load symbol
    sym = get_vgg_rcnn()

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # load training data
    voc, roidb, means, stds = load_rpn_roidb(image_set, year, root_path, devkit_path, flip=True)
    train_data = ROIIter(roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode='train',
                         ctx=ctx, work_load_list=work_load_list)

    # infer max shape
    max_data_shape = [('data', (1, 3, 1000, 1000))]

    # load pretrained
    args, auxs = load_param(pretrained, epoch, convert=True)

    # initialize params
    if not resume:
        input_shapes = {k: v for k, v in train_data.provide_data + train_data.provide_label}
        arg_shape, _, _ = sym.infer_shape(**input_shapes)
        arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
        args['cls_score_weight'] = mx.random.normal(mean=0, stdvar=0.01, shape=arg_shape_dict['cls_score_weight'])
        args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
        args['bbox_pred_weight'] = mx.random.normal(mean=0, stdvar=0.001, shape=arg_shape_dict['bbox_pred_weight'])
        args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])

    # train
    solver = Solver(prefix, sym, ctx, begin_epoch, end_epoch, kv_store, args, auxs, momentum=0.9, wd=0.0005,
                    learning_rate=1e-3, lr_scheduler=mx.lr_scheduler.FactorScheduler(30000, 0.1),
                    mutable_data_shape=True, max_data_shape=max_data_shape)
    solver.fit(train_data, frequent=frequent)

    # edit params and save
    for epoch in range(begin_epoch + 1, end_epoch + 1):
        arg_params, aux_params = load_checkpoint(prefix, epoch)
        arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T * mx.nd.array(stds)).T
        arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \
                                       mx.nd.array(means)
        save_checkpoint(prefix, epoch, arg_params, aux_params)
Ejemplo n.º 2
0
def train_rcnn(image_set,
               year,
               root_path,
               devkit_path,
               pretrained,
               epoch,
               prefix,
               ctx,
               begin_epoch,
               end_epoch,
               frequent,
               kv_store,
               work_load_list=None,
               resume=False,
               proposal='rpn'):
    # set up logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # load symbol
    sym = get_vgg_rcnn()

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # load training data
    voc, roidb, means, stds = eval('load_' + proposal + '_roidb')(image_set,
                                                                  year,
                                                                  root_path,
                                                                  devkit_path,
                                                                  flip=True)
    train_data = ROIIter(roidb,
                         batch_size=config.TRAIN.BATCH_IMAGES,
                         shuffle=True,
                         mode='train',
                         ctx=ctx,
                         work_load_list=work_load_list)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, 1000, 1000))]

    # load pretrained
    args, auxs, _ = load_param(pretrained, epoch, convert=True)

    # initialize params
    if not resume:
        input_shapes = {
            k: v
            for k, v in train_data.provide_data + train_data.provide_label
        }
        arg_shape, _, _ = sym.infer_shape(**input_shapes)
        arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
        args['cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        args['cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['cls_score_bias'])
        args['bbox_pred_weight'] = mx.random.normal(
            0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        args['bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['bbox_pred_bias'])

    # prepare training
    if config.TRAIN.FINETUNE:
        fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5']
    else:
        fixed_param_prefix = ['conv1', 'conv2']
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent)
    epoch_end_callback = mx.callback.do_checkpoint(prefix)
    if config.TRAIN.HAS_RPN is True:
        eval_metric = AccuracyMetric(use_ignore=True, ignore=-1)
        cls_metric = LogLossMetric(use_ignore=True, ignore=-1)
    else:
        eval_metric = AccuracyMetric()
        cls_metric = LogLossMetric()
    bbox_metric = SmoothL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    optimizer_params = {
        'momentum': 0.9,
        'wd': 0.0005,
        'learning_rate': 0.001,
        'lr_scheduler': mx.lr_scheduler.FactorScheduler(30000, 0.1),
        'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)
    }

    # train
    mod = MutableModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        work_load_list=work_load_list,
                        max_data_shapes=max_data_shape,
                        fixed_param_prefix=fixed_param_prefix)
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kv_store,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=args,
            aux_params=auxs,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)

    # edit params and save
    for epoch in range(begin_epoch + 1, end_epoch + 1):
        arg_params, aux_params = load_checkpoint(prefix, epoch)
        arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T *
                                          mx.nd.array(stds)).T
        arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \
                                       mx.nd.array(means)
        save_checkpoint(prefix, epoch, arg_params, aux_params)
Ejemplo n.º 3
0
def train_rcnn(
    image_set,
    year,
    root_path,
    devkit_path,
    pretrained,
    epoch,
    prefix,
    ctx,
    begin_epoch,
    end_epoch,
    frequent,
    kv_store,
    work_load_list=None,
):
    # load symbol
    sym = get_vgg_rcnn()

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # load training data
    voc, roidb, means, stds = load_rpn_roidb(image_set, year, root_path, devkit_path, flip=True)
    train_data = ROIIter(
        roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode="train", ctx=ctx, work_load_list=work_load_list
    )

    # infer max shape
    max_data_shape = [("data", (1, 3, 1000, 1000))]

    # load pretrained
    args, auxs = load_param(pretrained, epoch, convert=True)

    # initialize params
    arg_shape, _, _ = sym.infer_shape(data=(1, 3, 224, 224), rois=(1, 5))
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    args["cls_score_weight"] = mx.random.normal(mean=0, stdvar=0.01, shape=arg_shape_dict["cls_score_weight"])
    args["cls_score_bias"] = mx.nd.zeros(shape=arg_shape_dict["cls_score_bias"])
    args["bbox_pred_weight"] = mx.random.normal(mean=0, stdvar=0.001, shape=arg_shape_dict["bbox_pred_weight"])
    args["bbox_pred_bias"] = mx.nd.zeros(shape=arg_shape_dict["bbox_pred_bias"])

    # train
    solver = Solver(
        prefix,
        sym,
        ctx,
        begin_epoch,
        end_epoch,
        kv_store,
        args,
        auxs,
        momentum=0.9,
        wd=0.0005,
        learning_rate=1e-3,
        lr_scheduler=mx.lr_scheduler.FactorScheduler(30000, 0.1),
        mutable_data_shape=True,
        max_data_shape=max_data_shape,
    )
    solver.fit(train_data, frequent=frequent)

    # edit params and save
    for epoch in range(begin_epoch + 1, end_epoch + 1):
        arg_params, aux_params = load_checkpoint(prefix, epoch)
        arg_params["bbox_pred_weight"] = (arg_params["bbox_pred_weight"].T * mx.nd.array(stds)).T
        arg_params["bbox_pred_bias"] = arg_params["bbox_pred_bias"] * mx.nd.array(stds) + mx.nd.array(means)
        save_checkpoint(prefix, epoch, arg_params, aux_params)
Ejemplo n.º 4
0
def train_rcnn(image_set, year, root_path, devkit_path, pretrained, epoch,
               prefix, ctx, begin_epoch, end_epoch, frequent, kv_store,
               work_load_list=None, resume=False, proposal='rpn'):
    # set up logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # load symbol
    sym = get_vgg_rcnn()

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # load training data
    voc, roidb, means, stds = eval('load_' + proposal + '_roidb')(image_set, year, root_path, devkit_path, flip=True)
    train_data = ROIIter(roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode='train',
                         ctx=ctx, work_load_list=work_load_list)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, 1000, 1000))]

    # load pretrained
    args, auxs = load_param(pretrained, epoch, convert=True)

    # initialize params
    if not resume:
        input_shapes = {k: v for k, v in train_data.provide_data + train_data.provide_label}
        arg_shape, _, _ = sym.infer_shape(**input_shapes)
        arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
        args['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
        args['bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])

    # prepare training
    if config.TRAIN.FINETUNE:
        fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5']
    else:
        fixed_param_prefix = ['conv1', 'conv2']
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    #batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent)
    epoch_end_callback = mx.callback.do_checkpoint(prefix)
    if config.TRAIN.HAS_RPN is True:
        eval_metric = AccuracyMetric(use_ignore=True, ignore=-1)
        cls_metric = LogLossMetric(use_ignore=True, ignore=-1)
    else:
        eval_metric = AccuracyMetric()
        cls_metric = LogLossMetric()
    bbox_metric = SmoothL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    optimizer_params = {'momentum': 0.9,
                        'wd': 0.0005,
                        'learning_rate': 0.001,
                        'lr_scheduler': mx.lr_scheduler.FactorScheduler(30000, 0.1),
                        'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)}

    # train
    # mod = MutableModule(sym, data_names=data_names, label_names=label_names,
    #                     logger=logger, context=ctx, work_load_list=work_load_list,
    #                     max_data_shapes=max_data_shape, fixed_param_prefix=fixed_param_prefix)
    # mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
    #         batch_end_callback=batch_end_callback, kvstore=kv_store,
    #         optimizer='sgd', optimizer_params=optimizer_params,
    #         arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch)

    from mxnet.executor import Executor
    def batch_end_callback(batch_size, frequent):
        call_back = mx.callback.Speedometer(batch_size, frequent)

        def AverageL2Norm(d):
            return (mx.nd.norm(d) / np.sqrt(d.size)).asnumpy()[0]
        def decorator(parameter):
            call_back(parameter)
            if parameter.locals['nbatch'] % frequent == 0:
                executor_manager = parameter.locals['executor_manager']
                d = Executor._get_dict(executor_manager.aux_names, executor_manager.aux_arrays)
                for key, value in sorted(list(zip(d.keys(), d.values()))):
                    print(key, 'AverageL2Norm(aux):', AverageL2Norm(value[0]))
                for (index, value) in enumerate(executor_manager.param_names):
                    print (value, 'AverageL2Norm(param,grad):', (AverageL2Norm(executor_manager.param_arrays[index][0]),
                                                                AverageL2Norm(executor_manager.grad_arrays[index][0])))
        return decorator

    mod = mx.model.FeedForward(sym, data_names=data_names, label_names=label_names,
                        logger=logger, ctx=ctx, work_load_list=work_load_list,
                        fixed_param_prefix=fixed_param_prefix,
                        optimizer=mx.optimizer.SGD(**optimizer_params),
                        arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch
                        )
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback(train_data.batch_size, frequent=frequent), kvstore=kv_store)

    # edit params and save
    for epoch in range(begin_epoch + 1, end_epoch + 1):
        arg_params, aux_params = load_checkpoint(prefix, epoch)
        arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T * mx.nd.array(stds)).T
        arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \
                                       mx.nd.array(means)
        save_checkpoint(prefix, epoch, arg_params, aux_params)
Ejemplo n.º 5
0
def train_rcnn(image_set, year, root_path, devkit_path, pretrained, epoch,
               prefix, ctx, begin_epoch, end_epoch, frequent, kv_store,
               work_load_list=None, resume=False, proposal='rpn'):
    # set up logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # load symbol
    sym = get_vgg_rcnn()

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # load training data
    voc, roidb, means, stds = eval('load_' + proposal + '_roidb')(image_set, year, root_path, devkit_path, flip=True)
    train_data = ROIIter(roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode='train',
                         ctx=ctx, work_load_list=work_load_list)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, 1000, 1000))]

    # load pretrained
    args, auxs = load_param(pretrained, epoch, convert=True)

    # initialize params
    if not resume:
        input_shapes = {k: v for k, v in train_data.provide_data + train_data.provide_label}
        arg_shape, _, _ = sym.infer_shape(**input_shapes)
        arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
        args['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
        args['bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])

    # prepare training
    if config.TRAIN.FINETUNE:
        fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5']
    else:
        fixed_param_prefix = ['conv1', 'conv2']
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent)
    epoch_end_callback = mx.callback.do_checkpoint(prefix)
    if config.TRAIN.HAS_RPN is True:
        eval_metric = AccuracyMetric(use_ignore=True, ignore=-1)
        cls_metric = LogLossMetric(use_ignore=True, ignore=-1)
    else:
        eval_metric = AccuracyMetric()
        cls_metric = LogLossMetric()
    bbox_metric = SmoothL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    optimizer_params = {'momentum': 0.9,
                        'wd': 0.0005,
                        'learning_rate': 0.001,
                        'lr_scheduler': mx.lr_scheduler.FactorScheduler(30000, 0.1),
                        'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)}

    # train
    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, work_load_list=work_load_list,
                        max_data_shapes=max_data_shape, fixed_param_prefix=fixed_param_prefix)
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=kv_store,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch)

    # edit params and save
    for epoch in range(begin_epoch + 1, end_epoch + 1):
        arg_params, aux_params = load_checkpoint(prefix, epoch)
        arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T * mx.nd.array(stds)).T
        arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \
                                       mx.nd.array(means)
        save_checkpoint(prefix, epoch, arg_params, aux_params)