Ejemplo n.º 1
0
    'Experiment10(VGG16): Train the model for diagnosing the heart disease by the ECG.'
)
parser.add_argument(
    '-c',
    '--config',
    type=str,
    default='./Config/config.ini',
    metavar='str',
    help="the path of configure file (default: './Config/config.ini')")
Args = parser.parse_args()  # the Arguments
Args = read_config.read(Args)  # read configure file
#%% Main Function
if __name__ == '__main__':
    #%% ########## Read Data ##########
    print('read data')
    ECG_data, ECG_label = read_data.extract_data(
        read_data.read_data(Args))  # read data
    #%% ########## Data Processing ##########
    ECG_data = data_process.cut_out(ECG_data,
                                    Args.len)  # cut out the ECG signals
    ECG_data = data_process.axis_change(ECG_data)  # change the axis
    ECG_label = data_process.label_from_0(ECG_label)  # label from 0
    # split data
    train_x, test_x, train_y, test_y = data_process.train_test_split(
        ECG_data, ECG_label, trainratio=Args.trainratio, random_state=0)
    # change to Tensor
    train_x, train_y = data_process.to_tensor(train_x, train_y)
    test_x, test_y = data_process.to_tensor(test_x, test_y)
    #%% ########## Load Data ##########
    # change to dataset
    train_dataset = Data.TensorDataset(train_x, train_y)
    test_dataset = Data.TensorDataset(test_x, test_y)
Ejemplo n.º 2
0
import read_data as rd
import tensorflow as tf
import numpy as np

BATCH_SIZE = 10
EPOC = 5

import os
dir_path = os.path.dirname(__file__)  #<-- absolute dir the script is in
file_path = os.path.join(dir_path, "data.csv")
data_cols = rd.extract_data(file_path)

#place holder for x
X = tf.placeholder(tf.float32, [None, 2])

W = tf.Variable(tf.zeros([2, 1], tf.float32))
B = tf.Variable(tf.zeros([1], tf.float32))

Y_pred = tf.matmul(X, W)

train_x = []

with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    for i in range(BATCH_SIZE):
        # Retrieve a single instance:
        features_result = sess.run(data_cols)