Ejemplo n.º 1
0
    def __init__(self):
        reader = DataReader(187, 6)

        self.x_train, self.y_train = reader.read_train_human('./train/')
        self.x_test, self.y_test = reader.read_test_human("./test/")

        self.x_input, self.y_input = reader.temp_read_test_human("./test/")
Ejemplo n.º 2
0
    def get_libsvm_data(self):
        reader = DataReader()
        #self.x_train, self.y_train = reader.temp_read_train_data('../UCR_TS_Archive_2015/ECG5000/ECG5000_TEST')
        #self.x_test, self.y_test = reader.temp_read_test_data('../UCR_TS_Archive_2015/ECG5000/ECG5000_TRAIN')

        self.x_train, self.y_train = reader.temp_read_train_human(
            '../human/train/')
        self.x_test, self.y_test = reader.temp_read_test_human(
            "../human/test/")
Ejemplo n.º 3
0
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import pandas as pd
import numpy as np
import sys
sys.path.append("../script")
from convert_input import Convert
from validation import Validation
from read_data import DataReader

reader = DataReader(1,6)

x_train, y_train = reader.read_train_human('../human/train/')
x_test, y_test = reader.read_test_human("../human/test/")
x_input, y_input = reader.temp_read_test_human("../human/test/")
x_train = np.transpose(x_train, [1,0,2])


x_test = np.transpose(x_test, [1,0,2])



'''
To classify images using a recurrent neural network, we consider every image
row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
handle 28 sequences of 28 steps for every sample.
'''

# Parameters
learning_rate = 0.99