def generate_result_file(self, quest_ans_dict, is_test_data): total_un_ques = 0 res_file_path = os.path.join( os.path.dirname(self.ndq_test_data.processed_data_path), "tqa_test-tf.json") res_f_handle = open(res_file_path, "w") json_path = os.path.dirname( os.path.dirname(self.ndq_test_data.processed_data_path)) read_val_json = read_json(json_path, is_test_data) q_ids_list = read_val_json.get_questions_id() for q_id in q_ids_list: if quest_ans_dict.get(q_id, None) is None: #print "Question not present",q_id quest_ans_dict[q_id] = 'a' total_un_ques += 1 print "Total untracked questions", total_un_ques ques_ans_json_data = json.dumps(quest_ans_dict, indent=4) res_f_handle.write(ques_ans_json_data) res_f_handle.close()
def get_most_common_bonus_type(): items = read_json('items') affixes = {} for item in items: for affix in item['affixes']: if 'name' in affix and 'type' in affix: if affix['name'] not in affixes: affixes[affix['name']] = {} if affix['type'] not in affixes[affix['name']]: affixes[affix['name']][affix['type']] = 0 affixes[affix['name']][ affix['type']] = affixes[affix['name']][affix['type']] + 1 bestBonusMap = {} for affix, v in affixes.items(): maxCount = 0 for bonusType, count in v.items(): if count > maxCount and bonusType not in ['Profane', 'Insight']: maxCount = count bestBonus = bonusType bestBonusMap[affix] = bestBonus return bestBonusMap
def __init__(self, word2vec_path, processed_data_path, word_vec_size, max_q_length, max_option_length, max_opt_count, max_sent_para, max_words_sent, op_path=None): self.processed_data_path = processed_data_path self.raw_text_path = os.path.join(processed_data_path, "text_question_sep_files") if not os.path.exists(self.raw_text_path): read_json_data = read_json(os.path.dirname(processed_data_path)) read_json_data.read_content() if op_path is None: op_path = os.path.join(processed_data_path, "one_hot_files") if not os.path.exists(op_path): os.makedirs(op_path) self.word2vec_path = word2vec_path self.op_path = op_path self.word_vec_size = word_vec_size self.num_of_words_in_opt = max_option_length self.num_of_words_in_question = max_q_length self.num_of_sents_in_closest_para = max_sent_para self.num_of_words_in_sent = max_words_sent self.num_of_words_in_closest_sentence = max_sent_para * max_words_sent self.num_of_options_for_quest = max_opt_count self.folder_list = self.get_list_of_dirs(self.raw_text_path) self.unknown_words_vec_dict = None self.unknown_words_vec_dict_file = "unk_word2vec_dict.pkl" self.common_files_path = "../common_files" if not os.path.exists(self.common_files_path): os.makedirs(self.common_files_path)
def get_inverted_synonym_map(): synData = read_json('affix-synonyms') out = {} for syn in synData: for name in syn['synonyms']: out[name] = syn['name'] return out
def parse_item_pages(): sets = read_json('sets') cachePath = "./cache/items/" items = [] for file in os.listdir(cachePath): if include_page(file): items.extend(get_items_from_page(cachePath + file, sets)) items.sort(key=lambda x: x['name']) write_json(items, 'items')
def __init__(self, cfg_file, cfg_name=None): self._cfg = rj.read_json(cfg_file) if cfg_name and cfg_name in self._cfg: self._cfg = self._cfg[cfg_name] dict.__init__(self, self._cfg) self.__initialized = True # see self.__setattr__() set_test_config(self)
def test_read_json(self): """ read_json function returns a dictionary with Key: neighborhood Value: list of (latitude, longitude) We should expect to have 195 neighborhood in New York City """ result = read_json("NYC_Shapes.json") neighborhood = [result.keys()] self.assertEqual(len(neighborhood), 195)
def parse_minor_artifacts(): items = read_json('items') page = open('./cache/Minor_Artifact.html', "r", encoding='utf-8').read() soup = BeautifulSoup(page, 'html.parser') artifacts = get_artifacts_from_page(soup) for item in items: if item['name'] in artifacts: item['artifact'] = True write_json(items, 'items')
def __init__ (self, cfg_file, cfg_name=None) : config = rj.read_json (cfg_file) if cfg_name and cfg_name in config : self._cfg = config[cfg_name] else : self._cfg = config global _test_config _test_config = self dict.__init__ (self, self._cfg) self.changed_values = {} self.__initialized = True
def __init__(self, cfg_file, cfg_name=None): config = rj.read_json(cfg_file) if cfg_name and cfg_name in config: self._cfg = config[cfg_name] else: self._cfg = config global _test_config _test_config = self dict.__init__(self, self._cfg) self.changed_values = {} self.__initialized = True
def run(rootdir): i = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # print rootdir, filename try: json_list = read_json(rootdir + '/' + filename) # print json_list for json_obj in json_list: d_o = dict(json_obj) d_o.update({u'insert.20160919': 1}) CompanyDB.upsert_company(d_o) i += 1 print i pass except Exception, e: print "eeeeeeeeeeeee %s" % e.message
def send_message_to_rabbitmq(): data = rd.read_json() #Estabecendo conexão com o rabbitmq connection = pika.BlockingConnection( pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.queue_declare(queue='dados_json') channel.basic_publish( exchange='', routing_key='dados_json', body=str( rd.creat_data_to_pass())) #envia os dados do json para o rabbitmq print(" Dados Enviados") connection.close()
def generator_json(batch_size): batch_features = np.zeros((batch_size, 1, 84,84)) batch_segment = np.zeros((batch_size,1, 84, 84)) while True: for i in range(batch_size): image_name = random.choice(image_paths) json_path = image_name.replace('.png','.json') segment,gray = read_json(json_path) gray = cv2.resize(gray,(84,84)) segment = cv2.resize(segment, (84, 84)) segment = cv2.threshold(segment, 0.1, 1., cv2.THRESH_BINARY)[1] batch_features[i] = [gray] batch_segment[i] = [segment] yield batch_features, batch_segment
def get_data_stats(): stats = {} affixGroups = read_json('affix-groups') stats['groups'] = {'items': len(affixGroups)} affixSynonyms = read_json('affix-synonyms') stats['synonyms'] = {'items': len(affixSynonyms)} cannith = read_json('cannith') stats['cannith'] = { 'bonus types': len(cannith['bonusTypes']), 'item types': len(cannith['itemTypes']), 'progressions': len(cannith['progression']), } crafting = read_json('crafting') stats['crafting'] = { 'systems': len(crafting), 'items': reduce(lambda x, v: x + len(v), crafting.values(), 0) } quests = read_json('quests') stats['quests'] = {'raids': len(quests['raids'])} sets = read_json('sets') stats['sets'] = { 'count': len(sets), 'affixes': reduce( lambda x, v: x + reduce(lambda x2, v2: x2 + len(v2['affixes']), v, 0), sets.values(), 0) } items = read_json('items') stats['items'] = { 'items': len(items), 'affixes': reduce(lambda x, v: x + len(v['affixes']), items, 0) } return stats
def __init__(self, *args, **kwargs): try: # ログ設定ファイル読み込み logging.config.fileConfig(COMMON_PATH + const.RYU_LOG_CONF, disable_existing_loggers=False) self.logger = logging.getLogger(__name__) self.logger.debug("") super(mld_controller, self).__init__(*args, **kwargs) # コンテキストからDPSetの取得 self.dpset = kwargs["dpset"] # システムモジュールのソケットに対しパッチを適用 patcher.monkey_patch() # 設定情報の読み込み config = read_json(COMMON_PATH + const.CONF_FILE) self.logger.info("%s:%s", const.CONF_FILE, json.dumps(config.data, indent=4, sort_keys=True, ensure_ascii=False)) self.config = config.data[const.SETTING] # ループフラグの設定 self.loop_flg = True # ZMQの接続文字列を取得 zmq_conn = self.get_zmq_connect(config) self.zmq_pub = zmq_conn[0] self.zmq_sub = zmq_conn[1] # ZMQ送受信用ソケット生成 self.create_socket(self.zmq_pub, self.zmq_sub) # mldからの受信スレッドを開始 hub.spawn(self.receive_from_mld) except: self.logger.error("%s ", traceback.print_exc())
class TestApi: #最基本的用法 # @pytest.mark.parametrize('args',["美团","腾讯","阿里","百度"])#参数的值有多少个,那么方法就会执行多少次 # def test_01_api(self,args): # print(args) #解包的用法(ddt,unittest找个框架实现数据驱动的装饰器,@unpack) # @pytest.mark.parametrize('args',read_yaml() ) # def test_01_api(self,args): # '''获得网页新闻的接口''' # url = args['api_request']['url'] # method = args['api_request']['method'] # headers = args['api_request']['headers'] # params = args['api_request']['params'] # validate = args["api_validate"] # # if method == 'get': # requests.get() # else: # response=requests.post(url,json=params,headers=headers) # for val in validate: # assert val['eq']['code']==response.json()['code'] @pytest.mark.parametrize('args', read_json()) def test_01_api(self, args): '''获得网页新闻的接口''' url = args['api_request']['url'] method = args['api_request']['method'] headers = args['api_request']['headers'] params = args['api_request']['params'] eq = args["api_validate"]["eq"] if method == 'get': requests.get() else: response = requests.post(url,json=params,headers=headers) # assert code == response.json()["code"] # print(response.json()) cmp_dict(eq,response.json())
elmethod = "composition" sigma = 12 lamda = 0.0001 kernel = "gaussian" MAEtrain = [] MAEcross = [] el1 = sys.argv[1] el2 = sys.argv[2] maxrun = 5 avgEpredict = np.zeros(11) for irun in range(maxrun): write_json(el1, el2) mset = read_json("include_ML_natoms_30/data.json", energytype="formation") # mset = read_json("tests/data.json", energytype="formation") mcross, mtrain = get_testset(mset) mcross = read_json("%s%s.json" % (el1, el2), energytype="formation") #mtest, mset = get_testset(mset) #mtrain, mcross, mset = get_train_validation_set(mset) elmap = get_elements_map(mset) result = krr_regression(mtrain, mcross, sigma, lamda, kernel=kernel, elmap=elmap, elmethod=elmethod, loadalpha=False,
binary=False) elif config.model_name = 'TfIdf': vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=1, stop_words='english', use_idf=True) elif config.model_name = 'Counter': vectorizer = CountVectorizer() #vectorizer = CountVectorizer(tokenizer=lambda text: text.split()) #vectorizer = TfidfVectorizer(tokenizer=lambda text: text.split()) data_subtitle=[] vid_list=[] limits=None read_json.read_json(sys.argv[1],data_subtitle,sys.argv[2],vid_list,limits) print(len(data_subtitle)) X = vectorizer.fit_transform(data_subtitle) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() #opts.n_components=50 if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization.
import numpy as np from read_json import read_json, get_elements_map from split_dataset import * from ml import * from pylab import * np.random.seed(0) mset = read_json("larger_data/data.json", energytype="formation") mcross, mtrain = get_testset(mset) mcross = read_json("CoSi.json", energytype="formation") elmap = get_elements_map(mset) Xtrain, Xcross, Etrain, Ecross = get_X(mtrain, mcross, elmap=elmap, elmethod="composition") alpha = pickle.load(open('alpha.pkl', 'r')) sigma = 12 print mcross[0].formula for i in range(len(Ecross)): Eest = 0 # estimation for set number i Econ = [] ECo = 0 for j in range(len(Etrain)): d = Xtrain[j] - Xcross[i] dd = np.sqrt(np.inner(d, d)) Etmp = alpha[j] * get_kernel(dd, sigma, kernel="gaussian") Eest += Etmp Econ.append(np.abs(Etmp)) if "Co" in mtrain[j].formula:
def write_csv(strtype='general'): if strtype == "general": mset = read_json(filename = "data.json") f = open('general.csv', 'w') print >> f, "(E_DFT, mean.mass, mean.elecneg, mean.radius, mean.ionization" for atoms in mset: elecneg = [] rad = [] Eionization = [] for name in atoms.names: elecneg.append(pauling[name]) rad.append(radius[name]) Eionization.append(Eion[name]) sum_elecneg = np.sum(elecneg) / len(elecneg) std_elecneg = np.std(elecneg) sum_mass = np.sum(atoms.masses) / len(atoms.masses) std_mass = np.std(atoms.masses) sum_radius = np.sum(rad) / len(rad) std_radius = np.std(rad) sum_Eionization = np.mean(Eionization) print >>f, "%6.2f, %6.2f, %6.2f, %6.2f, %6.2f"%(atoms.Eref, sum_mass, sum_elecneg, sum_radius, sum_Eionization) elif strtype == "RS": mset = read_json(filename = "data_RS.json") f = open('RS.csv', 'w') print >> f, "(name0, name1, el, sum.mass, dmass, sum.elecneg, delecneg, calcvol, sum.radius, draius, dpos, Emadelung, Ecoh" for atoms in mset: elecneg1 = pauling[atoms.names[0]] elecneg2 = pauling[atoms.names[1]] volscaled = atoms.calcvol**(1./3.) / (radius[atoms.names[0]] * radius[atoms.names[1]]) * 10**4 delecneg = np.abs(elecneg1-elecneg2) sqrtneg = np.std([elecneg1, elecneg2]) #np.sqrt(elecneg1*elecneg2) # Elatt = Emadelung["%s"%(atoms.icsdno)] for el in atoms.names: if el in charge.keys(): Elatt = Emadelung["%s"%(atoms.icsdno)] / charge[el]**2 break dmass = np.abs(atoms.masses[0] - atoms.masses[1]) d = atoms.positions[0] - atoms.positions[1] dpos = np.sqrt(np.inner(d, d)) print >>f, "%s, %s, %s, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f"%(atoms.names[0], atoms.names[1], el, atoms.masses[0] + atoms.masses[1], np.abs(atoms.masses[0] - atoms.masses[1]), (elecneg1 + elecneg2), delecneg, atoms.calcvol, radius[atoms.names[0]] + radius[atoms.names[1]], np.abs(radius[atoms.names[0]] - radius[atoms.names[1]]), dpos, Elatt, atoms.Eref) elif strtype == "exptgap": mset = read_json(filename = "exptgap.json") f = open('exptgap.csv', 'w') print >> f, "(formula, std.mass, sum.mass, diff.mass, std.elecneg, sum.elecneg, diff.elecneg, std.radius, sum.radius, diff.radius, bandgap" for atoms in mset: elecneg = [] rad = [] for name in atoms.names: elecneg.append(pauling[name]) rad.append(radius[name]) sum_elecneg = np.sum(elecneg) / len(elecneg) std_elecneg = np.std(elecneg) diff_elecneg = np.max(elecneg) - np.min(elecneg) sum_mass = np.sum(atoms.masses) / len(atoms.masses) std_mass = np.std(atoms.masses) diff_mass = np.max(atoms.masses) - np.min(atoms.masses) sum_radius = np.sum(rad) / len(rad) std_radius = np.std(rad) diff_radius = np.max(rad) - np.min(rad) print >>f, "%s, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f"%(atoms.formula, std_mass, sum_mass, diff_mass, std_elecneg, sum_elecneg, diff_elecneg, std_radius, sum_radius, diff_radius, atoms.Eref)
data.append({"formula": "%s 1"%(el2), "FERE": 0}) json.dump(data, open("%s%s.json"%(el1, el2), 'w')) elmethod = "composition" sigma = 12 ; lamda = 0.0001 ; kernel = "gaussian" MAEtrain = [] MAEcross = [] el1 = sys.argv[1] el2 = sys.argv[2] maxrun = 5 avgEpredict = np.zeros(11) for irun in range(maxrun): write_json(el1, el2) mset = read_json("include_ML_natoms_30/data.json", energytype="formation") # mset = read_json("tests/data.json", energytype="formation") mcross, mtrain = get_testset(mset) mcross = read_json("%s%s.json"%(el1, el2), energytype="formation") #mtest, mset = get_testset(mset) #mtrain, mcross, mset = get_train_validation_set(mset) elmap = get_elements_map(mset) result = krr_regression(mtrain, mcross, sigma, lamda, kernel=kernel, elmap=elmap, elmethod=elmethod, loadalpha=False, alphanum=irun) MAEtrain.append(result[0]) MAEcross.append(result[1]) Epredict = result[2] print result[0], result[1] print "element formation energy :", Epredict[0], Epredict[-1]
import numpy as np from read_json import read_json, get_elements_map from split_dataset import * from ml import * from pylab import * np.random.seed(0) mset = read_json("larger_data/data.json", energytype="formation") mcross, mtrain = get_testset(mset) mcross = read_json("CoSi.json", energytype="formation") elmap = get_elements_map(mset) Xtrain, Xcross, Etrain, Ecross = get_X(mtrain, mcross, elmap=elmap, elmethod="composition") alpha = pickle.load(open('alpha.pkl', 'r')) sigma = 12 print mcross[0].formula for i in range(len(Ecross)): Eest = 0 # estimation for set number i Econ = [] ECo = 0 for j in range(len(Etrain)): d = Xtrain[j] - Xcross[i] dd = np.sqrt(np.inner(d, d)) Etmp = alpha[j] * get_kernel(dd, sigma, kernel="gaussian") Eest += Etmp Econ.append(np.abs(Etmp)) if "Co" in mtrain[j].formula: ECo += Etmp print Eest, ECo
def segmentate(self, data): for points in data: x = points.get('x') y = points.get('y') z = points.get('z') if (self.isWithinMinimalDistance(x, y, z)): self.segmentatedPoints.append(points) return self.segmentatedPoints def isWithinMinimalDistance(self, x, y, z): if (z > self.minimalHeight and z < self.maximumHeight): if (x > -self.radius and x < self.radius): if (y > -self.radius and y < self.radius): return True return False # for testing purposes only from read_json import read_json import json as json pointcloud = read_json() seg = segmentator(11.1111111, 4, -0.9, 1.5) points = seg.segmentate(pointcloud) file = open("segmentation.txt", "a") for point in points: file.write( str(point.get('x')) + " " + str(point.get('y')) + " " + str(point.get('z')) + "\n") file.close()
################################################################################### # flag = int(input("If you have the transform matrix? \nYes: press '1', No:press '2'\n")) # if flag == 2: # cal = Calibrater(image, img_size=size[-2::-1], width=tennis_width, height=tennis_height, data_path=None) # mat = cal._get_trans_matrix() # numpy.savetxt('mat_demo.csv', mat, delimiter = ',') ################################################################################### my_matrix = numpy.loadtxt(open("mat_demo.csv","rb"),delimiter=",",skiprows=0) ################################################################################### target_json = "/alphapose/alphapose-results.json" path = origin + target_json test = read_json.read_json(path) ################################################################################### video_path = os.path.join(origin, '/alphapose/badminton.mp4') device = cv2.VideoCapture(video_path) size = ((int(device.get(cv2.CAP_PROP_FRAME_WIDTH)),int(device.get(cv2.CAP_PROP_FRAME_HEIGHT)))) success, frame = device.read() ################################################################################### success = True frame_id = 0 while success: success, frame = device.read() img_final_list = find_athlete(test[frame_id], my_matrix, tennis_width, tennis_height) # frame_queue.put(frame) frame_id = frame_id + 1
def topapps(): return [app["package_name"] for app in read_json("topgooglecharts.json")["app_list"]]
def main_loop(year, these_awards): tweets = read_json.read_json(year) ignore_as_first_char = ('RT', '@', '#') # remove_as_first_char = ('@', '#') tweet_counter = 0 list_actors() list_movies() global fashion_list fashion_list = {} for award in these_awards: if any(people_word in award for people_word in ("perform", "direct", "cecil")): people_awards.append(award) real_awards.append(award) for line in tweets: if tweet_counter % 10000 == 0: print(tweet_counter) if tweet_counter == len(tweets) - 1: nominees, winners, presenters, hosts, awards, fashion = wrapup() end_time = time.time() # print(nominees, winners, presenters) # print("NOMINEES:", nominees) # print("WINNERS:", winners) # print("PRESENTERS:", presenters) # print("MENTIONS:", mentions) # print("RUNTIME:", end_time - start_time, "seconds. (", (end_time - start_time) / 60, "minutes.)") return nominees, winners, presenters, hosts, awards, fashion lower_text = line['text'].lower() if not any(cont_word in lower_text for cont_word in (pass_words + fashion_dict)): tweet_counter += 1 continue monologue = True if "monologue" in lower_text else False congrats_found = True if "ongrat" in lower_text else False fashion = True if any(cont_word in line['text'].lower() for cont_word in fashion_dict) else False cleaned = [] for word in line['text'].split(): if not word.startswith(ignore_as_first_char): # if word.startswith(remove_as_first_char) and len(word) > 1: # word = word[1:] # print(word) cleaned.append(word) tagged = nltk.tag.pos_tag(cleaned) lower_tagged = [(item[0].lower(), item[1]) for item in tagged] # print(clean_parsed) # for i in lower_tagged: # if "ongrat" in i[0]: # congrats_found = True # print(lower_tagged) # now, match proper nouns to verbs length = len(lower_tagged) counter = 0 while counter < length: # find every group of words labeled NNP if lower_tagged[counter][1] == 'NNP' and "ongrat" not in lower_tagged[counter][0]: potential_item, noun_len = full_nnp(lower_tagged[counter: length]) counter += noun_len if monologue: mon_item = can_combine_item_set(potential_item, mentions) try: mentions[mon_item] += 1 except: mentions[mon_item] = 1 continue if fashion: fashion_list.setdefault(potential_item, (0, 1, [])) fashion_list[potential_item][2].append(line['text']) blank = fashion_list[potential_item][2] fashion_list[potential_item] = (0, fashion_list[potential_item][1] + 1, blank) continue # find the next verb for each NNP group next_verb, verb_ind = find_next_verb(lower_tagged[counter: length]) if next_verb != "": if not any(word in next_verb for word in all_verbs): counter += 1 break new_counter = counter + verb_ind + 1 if any(lower_tagged[new_counter - 2][0] == negate_word for negate_word in ("didn't", "didnt", "not")): negated = True else: negated = False # find the next group of nouns starting with 'best' badaward = find_next_award_maria(lower_tagged, new_counter) newbadaward = "" # add award for word in badaward: newbadaward = newbadaward+word+" " try: badawardnames[newbadaward] += 1 except: badawardnames[newbadaward] = 1 # find the associated award name award = find_next_award_hardcoded(lower_tagged, new_counter) if award: update_master(award, potential_item, next_verb, negated) if congrats_found: update_master(award, potential_item, next_verb, True) else: counter += 1 tweet_counter += 1
import re from pprint import pprint from write_json import write_json from read_json import read_json if __name__ == "__main__": img_name_pattern = '[a-zA-Z0-9\\-_]+\\|,(png|PNG|svg|SVG|jpeg|jpg|JPEG|JPG|gif|GIF)' path = "./before/test5.json" img_url_counts = read_json(path) new_url_obj = {} for img_url in img_url_counts.keys(): res = re.search(img_name_pattern, img_url) new_url_obj[res.group(0)] = img_url_counts[img_url] write_json(new_url_obj, path)
def __init__(self): try: # ロガーの設定 self.logger = logging.getLogger(__name__) self.logger.debug("") # 設定情報読み込み config = read_json(COMMON_PATH + const.CONF_FILE) self.logger.info("%s:%s", const.CONF_FILE, json.dumps( config.data, indent=4, sort_keys=True, ensure_ascii=False)) self.config = config.data[const.SETTING] # IF情報取得 self.ifinfo = {} self.ifinfo = self.get_interface_info( self.config[const.MLD_ESW_IFNAME]) # QueryのQQIC設定 self.QQIC = self.calculate_qqic( self.config[const.REGURALY_QUERY_INTERVAL]) # 視聴情報初期化 self.ch_info = channel_info(self.config) # スイッチ情報読み込み switches = read_json(COMMON_PATH + const.SWITCH_INFO) self.logger.info("%s:%s", const.SWITCH_INFO, json.dumps( switches.data, indent=4, sort_keys=True, ensure_ascii=False)) self.switch_mld_info = switches.data[const.SW_TAG_MLD_INFO] self.switch_mc_info = switches.data[const.SW_TAG_MC_INFO] self.switches = switches.data[const.SW_TAG_SWITCHES] for switch in self.switches: if switch[const.SW_TAG_NAME] == const.SW_NAME_ESW: self.edge_switch = switch break # マルチキャスト情報読み込み mc_info = read_json(COMMON_PATH + const.MULTICAST_INFO) self.logger.info("%s:%s", const.MULTICAST_INFO, json.dumps( mc_info.data, indent=4, sort_keys=True, ensure_ascii=False)) self.mc_info_list = mc_info.data[const.MC_TAG_MC_INFO] self.mc_info_dict = {} for mc_info in self.mc_info_list: self.mc_info_dict[ mc_info[const.MC_TAG_MC_ADDR], mc_info[const.MC_TAG_SERV_IP]] = mc_info # bvidパターン読み込み bvid_variation = read_json(COMMON_PATH + const.BVID_VARIATION) self.logger.info("%s:%s", const.BVID_VARIATION, json.dumps( bvid_variation.data, indent=4, sort_keys=True, ensure_ascii=False)) bvid_variations = bvid_variation.data[const.BV_TAG_BV_INFO] self.bvid_variation = {} for bvid_variation in bvid_variations: # ":"で区切られたkeyを昇順にソートして再設定 bvid_key = const.DELIMIT_COLON.join(sorted(bvid_variation[ const.BV_TAG_KEY].split(const.DELIMIT_COLON))) self.bvid_variation[bvid_key] = \ bvid_variation[const.BV_TAG_BVID] # ZMQの接続文字列を取得 zmq_conn = self.get_zmq_connect(config) self.zmq_pub = zmq_conn[0] self.zmq_sub = zmq_conn[1] # ZMQ送受信用ソケット生成 self.create_socket(self.zmq_pub, self.zmq_sub) # Flowmod生成用インスタンス self.flowmod_gen = flow_mod_generator(self.switches) except: self.logger.error("%s ", traceback.print_exc()) self.end_process()
from bs4 import BeautifulSoup import requests import os import re import json import collections from read_json import read_json items = read_json('items') affixes = set() #print(json.dumps(data, indent=4, sort_keys=True)) for item in items: for affix in item['affixes']: affixes.add(affix['name']) for affix in sorted(affixes, key=str.casefold): print(affix)
"forest": 0.186148071251, "svr": 0.135622957115, }, "coulomb_ZiZj/d" : { "knn": 0.296029527716, "krr": 0.20612285173126219, "forest": 0.206198925628, "svr": 0.245838741856, }, "coulomb_1/d" : { "knn": 0.320368738508, "krr": 0.21328211175452691, "forest": 0.20198798341, "svr": 0.259278560667, }, } mset = read_json("data.json") mtest, mset = get_testset(mset) mtrain, mcross, mset = get_train_validation_set(mset) elmap = get_elements_map(mset) results = {} for elmethod in (None, "composition", #"constant", #"coordination", "inverse_cord", "coulomb_ZiZj/d", "coulomb_1/d",): results[elmethod] = {} results[elmethod]["knn"] = knn_regression(mtrain, mcross, 5, elmap=elmap, elmethod=elmethod) results[elmethod]["krr"] = krr_regression(mtrain, mcross, 50, 0.01, elmap=elmap, elmethod=elmethod)[1] results[elmethod]["forest"] = sklearn_regression(mtrain, mcross, "forest", elmap=elmap, elmethod=elmethod) results[elmethod]["svr"] = sklearn_regression(mtrain, mcross, "svr", elmap=elmap, elmethod=elmethod)
def plot_error_in_volume(mset): volerror = [] for atoms in mset: if atoms.exptvol is not None: volerror.append((atoms.calcvol - atoms.exptvol) / atoms.exptvol * 100) if np.abs(volerror[-1]) > 50: print atoms.formula, atoms.icsdno, atoms.exptvol, atoms.calcvol, volerror[-1] plot_all(volerror,"Error in volume (%) : (Vcalc - Vexpt) / Vexpt * 100") def plot_dict(a): X = np.arange(len(a)) bar(X, a.values(), align="center", width=0.5) xticks(X, a.keys()) ymax = max(a.values()) + 20 ylim(0, ymax) show() if __name__ == "__main__": from read_json import read_json import sys mset = read_json(sys.argv[1], energytype="formation") # mset = read_json("include_ML_natoms_10/data.json") plot_error_in_volume(mset) plot_Eref(mset) plot_natoms(mset) plot_dict(get_unique_elements(mset)) plot_dict(get_nelements_per_cell(mset))