Ejemplo n.º 1
0
def bilayer_lipid():
    import matplotlib.pyplot as plt
    outfile = "/home/mho/Downloads/new-self-ass.h5"
    n_particles_per_frame, positions, types, ids = load_trajectory_to_npy(
        outfile, stride=10)
    config = readdyviewer.Configuration()
    t = readdy.Trajectory(outfile)

    config.colors[t.particle_types['Head']] = readdyviewer.Color(
        plt.cm.jet(0)[0],
        plt.cm.jet(0)[1],
        plt.cm.jet(0)[2])
    config.radii[t.particle_types['Head']] = .7
    config.colors[t.particle_types['Tail']] = readdyviewer.Color(
        plt.cm.jet(1.)[0],
        plt.cm.jet(1.)[1],
        plt.cm.jet(1.)[2])
    config.radii[t.particle_types['Tail']] = .7

    config.stride = 1
    config.smoothing = 5
    config.cutoff = 5
    config.bond_radius = .02
    config.wait = 3
    config.draw_periodic = True
    config.set_box_size(25, 25, 25)
    readdyviewer.watch_npy(positions, types, ids, n_particles_per_frame,
                           config)  #
Ejemplo n.º 2
0
def calc_unbound_rdf(trajfiles, nL, rbins, tbins, rrange, nmax=None):

    r = []
    t = []
    for trajfile in trajfiles:
        print("Processing trajectory: {}".format(trajfile))
        traji = readdy.Trajectory(trajfile)
        density_ideal = nL / (traji.box_size[0] * traji.box_size[1] *
                              traji.box_size[2])
        try:
            bound_intervals, unbound_intervals = get_bound_unbound_intervals(
                traji)
            if nmax is None:
                nmax = len(unbound_intervals)
            elif nmax > len(unbound_intervals):
                nmax = len(unbound_intervals)

            def parfunc(bi):
                ri, ti = calc_LS_distance(traji, nL, bi)
                return (ri, ti)

            n_proc = 4
            out = Parallel(n_jobs=n_proc)(delayed(parfunc)(bi)
                                          for bi in unbound_intervals[0:nmax])

            [r.append(xi[0]) for xi in out if xi[1] is not None]
            [t.append(xi[1]) for xi in out if xi[1] is not None]

        except IndexError as e:
            print(e)

    r = np.vstack(r)
    t = np.hstack(t)

    T = np.zeros(r.shape)
    for i in range(r.shape[1]):
        T[:, i] = t

    r = r.flatten()
    T = T.flatten()

    trange = (0., np.max(t))

    rmin = rrange[0]
    rmax = rrange[1]
    rbins = np.linspace(rmin, rmax, rbins + 1)
    dr = rbins[1] - rbins[0]
    rbin_centers = rbins[0:-1] + dr * 0.5

    rweights = 1. / (4. * np.pi * rbin_centers**2. * dr * density_ideal)

    hist2d, r_edges, t_edges = np.histogram2d(r,
                                              T,
                                              bins=[rbins, tbins],
                                              range=[rrange, trange])

    for j in range(hist2d.shape[1]):
        hist2d[:, j] *= rweights

    return hist2d, r_edges, t_edges
Ejemplo n.º 3
0
 def setUpClass(cls):
     cls.dir = tempfile.mkdtemp("test-observables-io")
     sys = readdy.ReactionDiffusionSystem([10, 10, 10])
     sys.add_species("A", 1.)
     sim = sys.simulation()
     sim.record_trajectory()
     sim.add_particles("A", np.random.uniform(-4, 4, size=(100, 3)))
     sim.output_file = cls.dir + "/out.h5"
     sim.run(123, 1e-4)
     cls.traj = readdy.Trajectory(sim.output_file)
Ejemplo n.º 4
0
    def test_build_and_run_custom_loop(self):
        rds = readdy.ReactionDiffusionSystem(box_size=[7., 7., 7.], unit_system=None)
        rds.add_species("A", 1.0)
        rds.add_species("B", 1.0)
        rds.add_species("C", 1.0)
        rds.reactions.add("fusion: A +(2) B -> C", 10.)
        simulation = rds.simulation("SingleCPU")
        simulation.add_particle("A", [0., 0., 0.])
        simulation.add_particle("B", [3., 0., 0.])
        simulation.output_file = os.path.join(self.dir, "customlooptest1.h5")
        simulation.observe.number_of_particles(1, ["A", "B", "C"])

        def loop():
            nonlocal simulation
            dt = 1.0
            n_steps = 10000
            base_path = os.path.join(self.dir, "ckpts")
            os.makedirs(base_path, exist_ok=True)
            max_n_saves = 2

            init = simulation._actions.initialize_kernel()
            diff = simulation._actions.integrator_euler_brownian_dynamics(dt)
            calc_forces = simulation._actions.calculate_forces()
            create_nl = simulation._actions.create_neighbor_list(rds.calculate_max_cutoff())
            update_nl = simulation._actions.update_neighbor_list()
            reac = simulation._actions.reaction_handler_uncontrolled_approximation(dt)
            obs = simulation._actions.evaluate_observables()
            check = simulation._actions.make_checkpoint(base_path, max_n_saves)

            init()
            create_nl()
            calc_forces()
            update_nl()
            obs(0)
            for t in tqdm(range(1, n_steps + 1)):
                diff()
                update_nl()
                reac()
                update_nl()
                calc_forces()
                obs(t)  # striding of observables is done internally
                if t % 100 == 0:
                    check(t)

        simulation._run_custom_loop(loop)

        traj = readdy.Trajectory(simulation.output_file)
        ts, ns = traj.read_observable_number_of_particles()

        self.assertEqual(ns[0, 0], 1)
        self.assertEqual(ns[0, 1], 1)
        self.assertEqual(ns[0, 2], 0)
        self.assertEqual(ns[-1, 0], 0)
        self.assertEqual(ns[-1, 1], 0)
        self.assertEqual(ns[-1, 2], 1)
Ejemplo n.º 5
0
def create_and_show_sim():
    try:
        import os
        import readdy.util.io_utils as ioutils
        import matplotlib.pyplot as plt

        if os.path.exists('out.h5'):
            os.unlink('out.h5')

        system = readdy.ReactionDiffusionSystem([25., 25., 25.],
                                                temperature=300. *
                                                readdy.units.kelvin)
        system.add_species("A", 1.0)
        system.reactions.add("myfusion: A +(2) A -> A", rate=10.)
        system.reactions.add("myfission: A -> A +(2) A", rate=3.)
        system.potentials.add_harmonic_repulsion("A",
                                                 "A",
                                                 force_constant=10.,
                                                 interaction_distance=2.)
        simulation = system.simulation(kernel="CPU")

        simulation.output_file = "out.h5"
        simulation.reaction_handler = "UncontrolledApproximation"

        simulation.add_particle("A", [0., 0., 0.])

        simulation.record_trajectory(stride=1)
        simulation.observe.number_of_particles(stride=100)
        simulation.run(n_steps=3000, timestep=1e-2)

        n_particles_per_frame, positions, types, ids = load_trajectory_to_npy(
            simulation.output_file, stride=10)
        config = readdyviewer.Configuration()
        t = readdy.Trajectory(simulation.output_file)

        config.colors[t.particle_types['A']] = readdyviewer.Color(
            plt.cm.jet(0)[0],
            plt.cm.jet(0)[1],
            plt.cm.jet(0)[2])
        config.radii[t.particle_types['A']] = 7

        config.stride = 1
        config.smoothing = 3
        config.cutoff = 5
        config.bond_radius = .02
        config.wait = 5
        config.clearcolor = readdyviewer.Color(.5, .5, .5)
        config.draw_periodic = False
        config.set_box_size(25, 25, 25)
        readdyviewer.watch_npy(positions, types, ids, n_particles_per_frame,
                               config)
    finally:
        if os.path.exists('out.h5'):
            os.unlink('out.h5')
Ejemplo n.º 6
0
def calc_bound_rdf(trajfiles, nL, rbins, tbins, rrange):

    r = []
    t = []
    for trajfile in trajfiles:
        print("Processing trajectory: {}".format(trajfile))
        traji = readdy.Trajectory(trajfile)
        density_ideal = nL / (traji.box_size[0] * traji.box_size[1] *
                              traji.box_size[2])
        try:
            bound_intervals, unbound_intervals = get_bound_unbound_intervals(
                traji)

            def parfunc(bi):
                ri, ti = calc_LSL_distance(traji, nL, bi)
                return (ri, ti)

            n_proc = 4
            out = Parallel(n_jobs=n_proc)(delayed(parfunc)(bi)
                                          for bi in bound_intervals)

            [r.append(xi[0]) for xi in out]
            [t.append(xi[1]) for xi in out]

        except IndexError as e:
            print(e)
    r = np.vstack(r)
    t = np.hstack(t)

    r = np.array(r).flatten()
    t = np.array(t).flatten()

    trange = (0., np.max(t))

    rmin = rrange[0]
    rmax = rrange[1]
    rbins = np.linspace(rmin, rmax, rbins + 1)
    dr = rbins[1] - rbins[0]
    rbin_centers = rbins[0:-1] + dr * 0.5

    rweights = 1. / (4. * np.pi * rbin_centers**2. * dr * density_ideal)

    hist2d, r_edges, t_edges = np.histogram2d(r,
                                              t,
                                              bins=[rbins, tbins],
                                              range=[rrange, trange])

    for j in range(hist2d.shape[1]):
        #hist2d[:,j] *= rweights / (np.sum(hist2d[:,j]))
        hist2d[:, j] *= rweights

    return hist2d, r_edges, t_edges
Ejemplo n.º 7
0
def calculate_unbinding_moves(trajfile,potdict,rneighbor,R_react,weight_L,weight_S,**kwargs):

    if 'n_samples' in kwargs:
        n_samples = kwargs['n_samples']
    else:
        n_samples = 10000

    if 'n_trials' in kwargs:
        n_trials = kwargs['n_trials']
    else:
        n_trials = 1

    if 'savefile' in kwargs:
        savefile = kwargs['savefile']
    else:
        savefile = "accepted_dissociation_moves.txt"

    if 'tau_mol' in kwargs:
        tau_mol = kwargs['tau_mol']
    else:
        tau_mol = None

    if 'micro_model' in kwargs:
        if kwargs['micro_model']=="dimer":
            sample_diss = lambda traj: sample_dissociation_events_dimer(traj,potdict,rneighbor,R_react,weight_L,weight_S,n_samples,n_trials)
        elif kwargs['micro_model']=="sphere":
            sample_diss = lambda traj: sample_dissociation_events(traj,potdict,rneighbor,R_react,weight_L,weight_S,n_samples,n_trials)
        else:
            print("ERROR: micro_model must be either dimer or sphere, if defined!")

    else:
        sample_diss = lambda traj: sample_dissociation_events(traj,potdict,rneighbor,R_react,weight_L,weight_S,n_samples,n_trials)

    traj = readdy.Trajectory(trajfile)
    #stored_accepted_moves, Naccepted, Ntotal, Paccept, total_time, rvals = sample_dissociation_events(traj,potdict,rneighbor,R_react,weight_L,weight_S,n_samples,n_trials)
    stored_accepted_moves, Naccepted, Ntotal, Paccept, total_time, rvals = sample_diss(traj)

    print("**********************************************")
    print("Accepted/Total trials: {}/{}".format(Naccepted,Ntotal))
    print("Acceptance Probability: {:.2f}".format(Paccept))
    if tau_mol is not None:
        print("Sampling Time/Molecular Timescale: {:.1f} independent samples".format(total_time/tau_mol))
    print("**********************************************")

    # Write accepted dissociation configurations to seperate files to use as initital conditions
    header = "R_react {} weight_L {} weight_S {} Pacc {}".format(R_react,weight_L,weight_S,Paccept)
    np.savetxt(savefile, stored_accepted_moves, header=header)

    return
Ejemplo n.º 8
0
    def test_write_traj(self):
        traj_fname = os.path.join(self.tempdir, "traj.h5")

        rdf = readdy.ReactionDiffusionSystem(box_size=(10, 10, 10))
        rdf.add_species("A", diffusion_constant=1.0)
        rdf.reactions.add_conversion("myconversion", "A", "A", 1.0)
        rdf.reactions.add_fusion("myfusion", "A", "A", "A", 2, .5)
        rdf.potentials.add_harmonic_repulsion("A", "A", 1., .2)
        sim = rdf.simulation(kernel="SingleCPU")
        sim.show_progress = False
        sim.output_file = traj_fname
        sim.record_trajectory(1)
        sim.add_particles("A", np.random.random((100, 3)))
        recorded_positions = []
        sim.observe.particle_positions(
            1, callback=lambda x: recorded_positions.append(x))
        sim.run(50, 1e-3, False)

        traj = readdy.Trajectory(traj_fname)

        np.testing.assert_equal(traj.diffusion_constants["A"], 1.0)
        np.testing.assert_("A" in traj.particle_types.keys())
        np.testing.assert_equal(len(traj.reactions), 2)

        conv = next(x for x in traj.reactions if x.name == "myconversion")
        np.testing.assert_equal(conv.type, "conversion")
        np.testing.assert_equal(conv.name, "myconversion")
        np.testing.assert_equal(conv.rate, 1.0)
        np.testing.assert_equal(conv.educt_types, ["A"])
        np.testing.assert_equal(conv.product_types, ["A"])

        fusion = next(x for x in traj.reactions if x.name == "myfusion")
        np.testing.assert_equal(fusion.type, "fusion")
        np.testing.assert_equal(fusion.name, "myfusion")
        np.testing.assert_equal(fusion.rate, 2)
        np.testing.assert_equal(fusion.educt_distance, .5)
        np.testing.assert_equal(fusion.educt_types, ["A", "A"])
        np.testing.assert_equal(fusion.product_types, ["A"])

        for idx, frame in enumerate(traj.read()):
            recorded = recorded_positions[idx]
            np.testing.assert_equal(len(recorded), len(frame))
            for e_idx, entry in enumerate(frame):
                pos = recorded[e_idx]
                np.testing.assert_equal(pos.toarray(), entry.position)
                np.testing.assert_equal("NORMAL", entry.flavor)
                np.testing.assert_equal("A", entry.type)
                np.testing.assert_equal(idx, entry.t)
Ejemplo n.º 9
0
def edges():
    print(readdyviewer.__file__)
    trajfile = "/home/mho/Development/readdyviewer/tests/topology_simulation.h5"
    n_particles_per_frame, positions, types, ids = load_trajectory_to_npy(
        trajfile)
    config = readdyviewer.Configuration()
    t = readdy.Trajectory(trajfile)
    entries = t.read()
    time, topology_records = t.read_observable_topologies()
    print(len(topology_records))
    print(len(topology_records[0][0].edges))

    edges = []
    for timestep, tops in zip(time, topology_records):
        current_edges = []
        for top in tops:
            for e1, e2 in top.edges:
                if e1 <= e2:
                    ix1 = top.particles[e1]
                    ix2 = top.particles[e2]
                    current_edges.append((ix1, ix2))
                    p1 = entries[timestep][ix1]
                    p2 = entries[timestep][ix2]
                    assert p1.type == 'T' or p1.type == 'unstable T', "expected topology type but got {} -- {}".format(
                        p1, p2)
                    assert p2.type == 'T' or p2.type == 'unstable T', "expected topology type but got {} -- {}".format(
                        p1, p2)
        edges.append(current_edges)
    config.colors[t.particle_types['unstable T']] = readdyviewer.Color(
        153. / 255., 255. / 255., 0.)
    config.radii[t.particle_types['unstable T']] = .5
    config.colors[t.particle_types['T']] = readdyviewer.Color(
        255. / 255., 153. / 255., 0.)
    config.radii[t.particle_types['T']] = .5
    config.colors[t.particle_types['Ligand']] = readdyviewer.Color(.5, .5, .5)
    config.radii[t.particle_types['Ligand']] = 1.
    config.colors[t.particle_types['Decay']] = readdyviewer.Color(.1, .2, .3)
    config.radii[t.particle_types['Decay']] = .5

    config.stride = 1
    config.smoothing = 10
    config.bond_radius = .2
    config.cutoff = 3
    config.edge_color = readdyviewer.Color(.1, .1, .1)
    readdyviewer.watch_npy(positions, types, ids, n_particles_per_frame,
                           config, edges)
Ejemplo n.º 10
0
def calc_survival_times(traj_file):


    print(traj_file)
    traj = readdy.Trajectory(traj_file)

    periodic_directions = [0,1,2]
    timestep = 1e-4

    time_sim, counts = traj.read_observable_number_of_particles()

    time = time_sim * timestep 

    counts = counts.astype(np.int8)	# copy number of inactive sensor at each timestep
    diffS = np.diff(counts[:,1])

    act_reacts_inds = np.where(diffS==-1)	# timesteps of S->SA reactions
    deact_reacts_inds = np.where(diffS==1)	# timesteps of SA->S reactions

    act_times = time[act_reacts_inds]
    deact_times = time[deact_reacts_inds]
    if counts[0,1]==0: # Sensor is initially in bound state
        act_times = np.insert(act_times,0,0.)

    # Calculate survival times (i.e. unbound durations)
    if act_times.shape[0]==deact_times.shape[0]:
        survival_times = act_times[1:] - deact_times[:-1]
    else:
        survival_times = act_times[1:] - deact_times


    # Calculate suruvival time of complex (i.e. bound durations)
    if act_times.shape[0]==deact_times.shape[0]:
        bound_times = deact_times - act_times
    else:
        bound_times = deact_times - act_times[:-1]

    return (survival_times, bound_times)
Ejemplo n.º 11
0
def more_topologies_sim():
    trajfile = "/home/mho/Development/readdyviewer/tests/more_topologies_simulation.h5"
    n_particles_per_frame, positions, types, ids = load_trajectory_to_npy(
        trajfile)
    config = readdyviewer.Configuration()
    t = readdy.Trajectory(trajfile)
    entries = t.read()
    time, topology_records = t.read_observable_topologies()

    edges = []
    for timestep, tops in enumerate(topology_records):
        current_edges = []
        for top in tops:
            for e1, e2 in top.edges:
                ix1 = top.particles[e1]
                ix2 = top.particles[e2]
                current_edges.append((ix1, ix2))
                p1 = entries[timestep][ix1]
                p2 = entries[timestep][ix2]
                assert p1.type == 'T' or p1.type == 'center T', "expected topology type but got {} -- {}".format(
                    p1, p2)
                assert p2.type == 'T' or p2.type == 'center T', "expected topology type but got {} -- {}".format(
                    p1, p2)
        edges.append(current_edges)
    config.colors[t.particle_types['center T']] = readdyviewer.Color(
        153. / 255., 255. / 255., 0.)
    config.radii[t.particle_types['center T']] = .5
    config.colors[t.particle_types['T']] = readdyviewer.Color(
        255. / 255., 153. / 255., 0.)
    config.radii[t.particle_types['T']] = .5
    config.clearcolor = readdyviewer.Color(155. / 255., 155. / 255.,
                                           155. / 255.)

    config.stride = 1
    print(positions.shape)
    print("go!")
    readdyviewer.watch_npy(positions, types, ids, n_particles_per_frame,
                           config, edges)
Ejemplo n.º 12
0
import os
import numpy as np
import readdy

rds = readdy.ReactionDiffusionSystem(box_size=[10., 10., 10.],
                                     unit_system=None)
rds.add_species("A")
rds.potentials.add_cylinder("A", 100, (0, 0, 0), (1, 0, 0), 1, inclusion=False)

simulation = rds.simulation(kernel="SingleCPU")

simulation.output_file = "out.h5"
simulation.add_particles("A", np.random.normal(size=(5000, 3)))
simulation.record_trajectory(stride=100)

if os.path.exists(simulation.output_file):
    os.remove(simulation.output_file)
simulation.run(n_steps=30000, timestep=1e-3)

trajectory = readdy.Trajectory('out.h5')
trajectory.convert_to_xyz(particle_radii={'A': 0.1})
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    outfile = "{}/LigandDiffusion_unbound_out_bulk_index_{}.h5".format(
        outdir, config_index)

    if args.savexyz:
        save_xyz = bool(args.savexyz)
    else:
        save_xyz = False

    #-----------------------------------------------------------------------------------
    #### Load trajectory and L-R configuration files ####
    #-----------------------------------------------------------------------------------
    # Load trajectory data
    traj = readdy.Trajectory(rundir + 'LigandDiffusion_out_bulk.h5')
    timestep, types, ids, positions = traj.read_observable_particles()

    # Load LR config file
    LRconfigfile = rundir + "accepted_dissociation_moves.txt"
    with open(LRconfigfile, 'r') as f:
        header = f.readline()
    split_header = header.split()

    # Get particle positions for initial condition
    orientation_data = np.loadtxt(LRconfigfile,
                                  skiprows=config_index + 1,
                                  max_rows=1)
    config_time_ind = int(orientation_data[0])
    dE = orientation_data[1]
    pos_dissocL = orientation_data[2:5].reshape((1, 3))
Ejemplo n.º 14
0
def perform(kernel="SingleCPU",
            n_particles_a=2357,
            force_constant=10.,
            file_suffix="",
            full_simulation=False,
            debug_run=False,
            n_threads=-1):
    print("kernel {}, n_particles_a {}, force_constant {}, threads {}".format(
        kernel, n_particles_a, force_constant, n_threads))
    n_particles_b = n_particles_a
    n_particles_c = 0
    desired_a_density = 2357. / 1e6  # number of particles per nanometer**3
    edge_length = (n_particles_a / desired_a_density)**(1. / 3.)
    print("Use edge length {}".format(edge_length))
    system = readdy.ReactionDiffusionSystem(
        box_size=[edge_length, edge_length, edge_length],
        temperature=293.,
        unit_system={
            "length_unit": "nanometer",
            "time_unit": "nanosecond",
            "energy_unit": "kilojoule / mol"
        })

    particle_radii = {"A": 1.5, "B": 3., "C": 3.12}  # in nanometers
    ut = readdy.units

    system.add_species("A",
                       diffusion_constant=143.1 * ut.micrometer**2 / ut.second)
    system.add_species("B",
                       diffusion_constant=71.6 * ut.micrometer**2 / ut.second)
    system.add_species("C",
                       diffusion_constant=68.82 * ut.micrometer**2 / ut.second)

    reaction_radius = particle_radii["A"] + particle_radii["B"]
    system.reactions.add_fusion("fusion",
                                "A",
                                "B",
                                "C",
                                rate=1e6 * 1. / ut.second,
                                educt_distance=reaction_radius * ut.nanometer)
    system.reactions.add_fission("fission",
                                 "C",
                                 "A",
                                 "B",
                                 rate=5e4 * 1. / ut.second,
                                 product_distance=reaction_radius *
                                 ut.nanometer)

    if force_constant > 0.:
        fc = force_constant * ut.kilojoule / ut.mol / (ut.nanometer**2)
        system.potentials.add_harmonic_repulsion(
            "A",
            "A",
            fc,
            interaction_distance=particle_radii["A"] + particle_radii["A"])
        system.potentials.add_harmonic_repulsion(
            "B",
            "B",
            fc,
            interaction_distance=particle_radii["B"] + particle_radii["B"])
        system.potentials.add_harmonic_repulsion(
            "C",
            "C",
            fc,
            interaction_distance=particle_radii["C"] + particle_radii["C"])
        system.potentials.add_harmonic_repulsion(
            "A",
            "B",
            fc,
            interaction_distance=particle_radii["A"] + particle_radii["B"])
        system.potentials.add_harmonic_repulsion(
            "B",
            "C",
            fc,
            interaction_distance=particle_radii["B"] + particle_radii["C"])
        system.potentials.add_harmonic_repulsion(
            "C",
            "A",
            fc,
            interaction_distance=particle_radii["C"] + particle_radii["A"])

    simulation = system.simulation(kernel=kernel)
    simulation.output_file = "cytosolic_reactions_" + kernel + "_n_a_" + str(n_particles_a) \
                             + "_force_" + str(force_constant) + "_" + file_suffix + ".h5"
    simulation.reaction_handler = "UncontrolledApproximation"

    edge_length = system.box_size[0]
    if full_simulation:
        initial_positions_a = np.random.random(
            size=(n_particles_a, 3)) * edge_length - .5 * edge_length
        initial_positions_b = np.random.random(
            size=(n_particles_b, 3)) * edge_length - .5 * edge_length
        simulation.add_particles("A", initial_positions_a)
        simulation.add_particles("B", initial_positions_b)
    else:  # start in roughly equilibrated state
        n_particles_c = n_particles_a * 2 // 3
        n_particles_a_actual = n_particles_a - n_particles_c
        n_particles_b = n_particles_a_actual
        initial_positions_a = np.random.random(
            size=(n_particles_a_actual, 3)) * edge_length - .5 * edge_length
        initial_positions_b = np.random.random(
            size=(n_particles_b, 3)) * edge_length - .5 * edge_length
        initial_positions_c = np.random.random(
            size=(n_particles_c, 3)) * edge_length - .5 * edge_length
        simulation.add_particles("A", initial_positions_a)
        simulation.add_particles("B", initial_positions_b)
        simulation.add_particles("C", initial_positions_c)

    simulation.observe.number_of_particles(stride=1, types=["A", "B", "C"])

    if os.path.exists(simulation.output_file):
        os.remove(simulation.output_file)

    dt = 1e-1  # in nanoseconds
    if full_simulation:
        n_steps = int(10000. / dt)  # simulate to 10 microseconds
    else:
        n_steps = 3000
    if debug_run:
        n_steps = 200
    print("Performing n_steps {} ..".format(n_steps))

    if kernel != 'SingleCPU':
        simulation.kernel_configuration.n_threads = n_threads

    simulation.run(n_steps=n_steps, timestep=dt * ut.nanosecond)

    perf = simulation._simulation.performance_root()
    print(perf)
    print("Simulated for {} seconds".format(perf.time()))
    performance_tree = traverse_performance_tree(perf)

    traj = readdy.Trajectory(simulation.output_file)
    times, counts = traj.read_observable_number_of_particles()
    counts = {"A": counts[:, 0], "B": counts[:, 1], "C": counts[:, 2]}
    times = times * dt
    n_frames = len(counts["A"])
    average_n_particles = (np.sum(counts["A"]) + np.sum(counts["B"]) +
                           np.sum(counts["C"])) / n_frames
    print("Time averaged total number of particles {}".format(
        average_n_particles))

    t_pp_ps = perf.time() / average_n_particles / n_steps
    print("Computation time per particle per integration step is {} seconds".
          format(t_pp_ps))

    arguments = {
        "kernel": kernel,
        "n_particles_a": n_particles_a,
        "force_constant": force_constant,
        "file_suffix": file_suffix
    }
    result = {
        "time/particle/step": t_pp_ps,
        "average_n_particles": average_n_particles,
        "n_particles": counts,
        "times": times,
        "computation_time": perf.time(),
        "performance_tree": performance_tree,
        "volume": edge_length**3,
        "unit_system": {
            "length_unit": "nanometer",
            "time_unit": "nanosecond",
            "energy_unit": "kilojoule / mol"
        },
        "n_steps": n_steps,
        "n_threads": n_threads
    }
    data = dict()
    data.update(arguments)
    data.update(result)

    os.unlink(simulation.output_file)

    del simulation
    del system

    import gc
    gc.collect()
    return data
if __name__ == '__main__':
    system = readdy.ReactionDiffusionSystem(
        box_size=(4, 4, 4), periodic_boundary_conditions=[True, True, True], unit_system=None)
    system.add_species("A", 1.0)
    system.add_species("B", 1.0)
    system.potentials.add_harmonic_repulsion("A", "B", 1., 1.)

    simulation = system.simulation(kernel="SingleCPU")

    simulation.output_file = "out.h5"
    simulation.observe.rdf(200, np.linspace(0., 2., 10), ["A"], ["B"], 1. / system.box_volume)
    simulation.add_particle("A", [0., 0., 0.])
    simulation.add_particle("B", [0., 0., 1.])

    if os.path.exists(simulation.output_file):
        os.remove(simulation.output_file)

    simulation.run(n_steps=10000000, timestep=2e-3)

    traj = readdy.Trajectory(simulation.output_file)
    rdf_times, bin_centers, rdf_values = traj.read_observable_rdf()

    mean, std_dev, std_err = average_across_first_axis(rdf_values)
    plt.errorbar(bin_centers, mean, yerr=std_err, fmt=".", label="ReaDDy")
    plot_boltzmann(1., 1.)
    plt.legend()
    plt.xlabel(r"Distance $r$ of A and B")
    plt.ylabel(r"Radial distribution function $g(r)$")
    plt.show()
Ejemplo n.º 16
0
    def test_reactions_observable(self):
        fname = os.path.join(self.dir,
                             "test_observables_particle_reactions.h5")
        context = Context()
        context.box_size = [10., 10., 10.]
        context.particle_types.add("A", .0)
        context.particle_types.add("B", .0)
        context.particle_types.add("C", .0)
        context.reactions.add_conversion("mylabel", "A", "B", .00001)
        context.reactions.add_conversion("A->B", "A", "B", 1.)
        context.reactions.add_fusion("B+C->A", "B", "C", "A", 1.0, 1.0, .5, .5)
        sim = Simulation("CPU", context)
        sim.add_particle("A", common.Vec(0, 0, 0))
        sim.add_particle("B", common.Vec(1.0, 1.0, 1.0))
        sim.add_particle("C", common.Vec(1.1, 1.0, 1.0))

        n_timesteps = 1

        handle = sim.register_observable_reactions(1)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"reactions", int(3))
            loop = sim.create_loop(1)
            loop.write_config_to_file(f)
            loop.run(n_timesteps)

        type_str_to_id = {
            k: x["type_id"]
            for k, x in ioutils.get_particle_types(fname).items()
        }

        traj = readdy.Trajectory(fname)
        reac = traj.read_observable_reactions()
        with h5py.File(fname, "r") as f2:
            data = f2["readdy/observables/reactions"]
            time_series = f2["readdy/observables/reactions/time"]
            np.testing.assert_equal(time_series,
                                    np.array(range(0, n_timesteps + 1)))

            def get_item(name, collection):
                return next(x for x in collection if x["name"] == name)

            import readdy.util.io_utils as io_utils
            reactions = io_utils.get_reactions(fname)

            mylabel_reaction = get_item(b"mylabel", reactions.values())
            np.testing.assert_allclose(mylabel_reaction["rate"], .00001)
            np.testing.assert_equal(mylabel_reaction["n_educts"], 1)
            np.testing.assert_equal(mylabel_reaction["n_products"], 1)
            np.testing.assert_equal(mylabel_reaction["educt_types"],
                                    [type_str_to_id["A"], 0])
            np.testing.assert_equal(mylabel_reaction["product_types"],
                                    [type_str_to_id["B"], 0])
            atob_reaction = get_item(b"A->B", reactions.values())
            np.testing.assert_equal(atob_reaction["rate"], 1.)
            np.testing.assert_equal(atob_reaction["n_educts"], 1)
            np.testing.assert_equal(atob_reaction["n_products"], 1)
            np.testing.assert_equal(mylabel_reaction["educt_types"],
                                    [type_str_to_id["A"], 0])
            np.testing.assert_equal(mylabel_reaction["product_types"],
                                    [type_str_to_id["B"], 0])

            fusion_reaction = get_item(b"B+C->A", reactions.values())
            np.testing.assert_equal(fusion_reaction["rate"], 1.)
            np.testing.assert_equal(fusion_reaction["educt_distance"], 1.)
            np.testing.assert_equal(fusion_reaction["n_educts"], 2)
            np.testing.assert_equal(fusion_reaction["n_products"], 1)
            np.testing.assert_equal(fusion_reaction["educt_types"],
                                    [type_str_to_id["B"], type_str_to_id["C"]])
            np.testing.assert_equal(fusion_reaction["product_types"],
                                    [type_str_to_id["A"], 0])

        _, records = reac
        np.testing.assert_equal(len(records), 2)
        # records of 1st time step
        for record in records[1]:
            np.testing.assert_(record.type in ('conversion', 'fusion'))
            if record.type == 'conversion':
                np.testing.assert_equal(record.position, np.array([.0, .0,
                                                                   .0]))
                np.testing.assert_equal(record.reaction_label, 'A->B')
            else:
                # fusion
                np.testing.assert_allclose(record.position,
                                           np.array([1.05, 1.0, 1.0]))
                np.testing.assert_equal(record.reaction_label, 'B+C->A')
Ejemplo n.º 17
0
    nC = 1
    kOn = "1E+2"
    kOff = "1E-0"
    traj_numbers = range(0, 10)
    rundir = "./run_bulk_nL{}_nC{}_kOn{}_kOff{}/".format(nLtag, nC, kOn, kOff)

    # Set number of free ligands
    nL = nLtag - 1

    trajfiles = [
        rundir + 'trajectory_{}/LR_out_bulk.h5'.format(traji)
        for traji in traj_numbers
    ]

    # Build bins for radial distribution function of ligands as function of time
    traj0 = readdy.Trajectory(trajfiles[0])
    rbins = 100
    rmin = 1.7
    rmax = traj0.box_size[0] * 0.5  # (this can be improved upon)
    bin_edges = np.linspace(rmin, rmax, rbins + 1)
    rrange = (rmin, rmax)

    tbins = 100

    hist2d, r_edges, t_edges = calc_bound_rdf(trajfiles, nL, rbins, tbins,
                                              rrange)

    print(hist2d.shape)

    # Normalize rdf at each time
    for j in range(hist2d.shape[1]):
Ejemplo n.º 18
0
def calculate_reaction_probs(rundir,potdict,r_react,weight_L,nL,nLtag,**kwargs):#n_cores=1,savefile):

    # Parse kwargs
    if 'n_cores' in kwargs:
        n_cores = kwargs['n_cores']
    else:
        n_cores = 1

    if 'savefile' in kwargs:
        savefile = kwargs['savefile']
    else:
        savefile = "unbound_reaction_event_density_nL_{}".format(nL)

    if 'trajfile' in kwargs:
        trajfile = kwargs['trajfile']
    else:
        trajfile = None

    if 'micro_model' in kwargs:
        if kwargs['micro_model']=="dimer":
            parfunc_calc_accept = lambda trajfile: calc_accept_dimer(trajfile,potdict,r_react,weight_L,nL,nLtag)
        elif kwargs['micro_model']=="sphere":
            parfunc_calc_accept = lambda trajfile: calc_accept(trajfile,potdict,r_react,weight_L,nL,nLtag)
        else:
            print("ERROR: micro_model must be either dimer or sphere, if defined!")

    else:
        parfunc_calc_accept = lambda trajfile: calc_accept(trajfile,potdict,r_react,weight_L,nL,nLtag)

    # Loop over unbound simulations
    if trajfile is None:
        trajfilebase = rundir+'unbound_simulations_fine_output/LigandDiffusion_unbound_out_bulk_index_*.h5'
        config_indices = []
        trajfiles = []
        total_errors = 0
        for filepath in glob.iglob(trajfilebase):
            trajfiles.append(filepath)

    else:
        trajfiles = [trajfile]

    traj0 = readdy.Trajectory(trajfiles[0])
    timestep, types, ids, positions = traj0.read_observable_particles()
    tstart = 0
    tstop = timestep.shape[0]
    sample_freq = 1
    time_indices = range(tstart,tstop,sample_freq)

    #parfunc_calc_accept = lambda trajfile: calc_accept(trajfile,potdict,r_react,weight_L,nL,nLtag)

    react_probs = Parallel(n_jobs=n_cores)(delayed(parfunc_calc_accept)(traji) for traji in trajfiles)

    react_probs = [x for x in react_probs if x is not None]

    react_probs = np.array(react_probs)

    # Save reaction probability
    header = "tstart {} tstop {} sample_freq {} nL {}".format(tstart,tstop,sample_freq,nL)
    outfile = rundir + savefile
    np.save(outfile,react_probs)
    print("Reaction Probabilities saved to: {}".format(outfile))

    return react_probs
def main():
    parser = argparse.ArgumentParser(
        description="Parses an hdf5 (*.h5) trajectory file produced\
         by the ReaDDy software and converts it into the Simularium\
         visualization-data-format")
    parser.add_argument("file_path",
                        help="the file path of the trajectory to parse")
    parser.add_argument(
        "output_path",
        help="the output file path to save the processed trajectory to")
    args = parser.parse_args()

    file_path = args.file_path
    output_path = args.output_path

    traj = readdy.Trajectory(file_path)
    n_particles_per_frame, positions, types, ids = traj.to_numpy(start=0,
                                                                 stop=None)

    # load flavors
    flavors = np.zeros_like(types)
    for typeid in range(np.max(types)):
        if traj.is_topology_particle_type(typeid):
            flavors[types == typeid] = 1
        else:
            flavors[types == typeid] = 0

    # types.shape[1] is the max. number of particles in the simulation
    # for each particle:
    # - vis type 1000 (1)
    # - type id (1)
    # - loc (3)
    # - rot (3)
    # - radius/flavor (1)
    # - n subpoints (1)
    max_n_particles = types.shape[1]
    frame_buf = np.zeros((max_n_particles * 10, ))
    frame_buf[::10] = 1000  # vis type
    data = {}
    data['msgType'] = 1
    data['bundleStart'] = 0
    data['bundleSize'] = len(n_particles_per_frame)
    data['bundleData'] = []
    ix_particles = np.empty((3 * max_n_particles, ), dtype=int)

    for i in range(max_n_particles):
        ix_particles[3 * i:3 * i + 3] = np.arange(i * 10 + 2, i * 10 + 2 + 3)

    for t in range(len(n_particles_per_frame)):
        frame_data = {}
        frame_data['frameNumber'] = t
        frame_data['time'] = float(t)
        n_particles = int(n_particles_per_frame[t])
        local_buf = frame_buf[:10 * n_particles]
        local_buf[1::10] = types[t, :n_particles]
        local_buf[ix_particles[:3 * n_particles]] = positions[
            t, :n_particles].flatten()
        local_buf[8::10] = flavors[t, :n_particles]
        frame_data['data'] = local_buf.tolist()
        data['bundleData'].append(frame_data)

    with open(output_path, 'w+') as outfile:
        json.dump(data, outfile)
Ejemplo n.º 20
0
    def _run_test(self, with_topologies, with_particles, fname):
        system = self._set_up_system()
        sim = system.simulation()

        if with_topologies:
            t1_initial_pos = np.random.normal(0, 1, size=(4, 3))
            t1 = sim.add_topology("TT1", ["T1", "T2", "T1", "T2"],
                                  t1_initial_pos)
            t1.graph.add_edge(0, 1)
            t1.graph.add_edge(1, 2)
            t1.graph.add_edge(2, 3)
            t1.graph.add_edge(3, 0)
            t2_initial_pos = np.random.normal(0, 1, size=(4, 3))
            t2 = sim.add_topology("TT2", ["T2", "T1", "T2", "T1"],
                                  t2_initial_pos)
            t2.graph.add_edge(0, 1)
            t2.graph.add_edge(1, 2)
            t2.graph.add_edge(2, 3)

        if with_particles:
            a_particles_initial_pos = np.random.normal(0, 1, size=(20, 3))
            sim.add_particles("A", a_particles_initial_pos)
            b_particles_initial_pos = np.random.normal(0, 1, size=(50, 3))
            sim.add_particles("B", b_particles_initial_pos)

        def topologies_callback(_):
            if with_topologies:
                if len(sim.current_topologies) % 2 == 0:
                    sim.add_topology("Dummy", "Dummy",
                                     np.random.random(size=(1, 3)))
                else:
                    t = sim.add_topology("Dummy", "Dummy",
                                         np.random.random(size=(5, 3)))
                    t.graph.add_edge(0, 1)
                    t.graph.add_edge(1, 2)
                    t.graph.add_edge(2, 3)
                    t.graph.add_edge(3, 4)
                    t.configure()

        sim.make_checkpoints(7, output_directory=self.dir, max_n_saves=7)
        sim.record_trajectory()
        sim.observe.topologies(1, callback=topologies_callback)
        sim.output_file = os.path.join(self.dir, fname)
        sim.show_progress = False
        sim.run(120, 1e-2, show_summary=False)

        traj = readdy.Trajectory(sim.output_file)
        entries = traj.read()
        _, traj_tops = traj.read_observable_topologies()

        system = self._set_up_system()
        sim = system.simulation()

        ckpt_files = sim.list_checkpoint_files(self.dir)
        ckpt_file = sim.get_latest_checkpoint_file(self.dir)
        checkpoints = sim.list_checkpoints(ckpt_file)
        checkpoint = checkpoints[-1]

        latest_checkpoint_step = 120 // 7 * 7
        assert checkpoint['step'] == latest_checkpoint_step, "expected {} but got {} (file {} of files {})"\
            .format(latest_checkpoint_step, checkpoint['step'], ckpt_file, ckpt_files)

        sim.load_particles_from_checkpoint(ckpt_file)

        current_entries = entries[latest_checkpoint_step]
        current_particles = sim.current_particles

        if with_topologies:
            tops = sim.current_topologies
            assert len(tops) == len(traj_tops[latest_checkpoint_step]), \
                f"expected {len(traj_tops[latest_checkpoint_step])} topologies, " \
                f"got {len(tops)} (file {ckpt_file})"
            assert tops[0].type == "TT1"
            assert tops[0].graph.has_edge(0, 1)
            assert tops[0].graph.has_edge(1, 2)
            assert tops[0].graph.has_edge(2, 3)
            assert tops[0].graph.has_edge(3, 0)
            assert not tops[0].graph.has_edge(0, 2)
            assert not tops[0].graph.has_edge(1, 3)
            assert tops[1].type == "TT2"
            assert tops[1].graph.has_edge(0, 1)
            assert tops[1].graph.has_edge(1, 2)
            assert tops[1].graph.has_edge(2, 3)

            topologies = traj_tops[checkpoint['step']]

            # check whether restored topologies are o.k.
            assert len(topologies) == len(tops)
            for ix, topology_record in enumerate(topologies):
                restored_topology = tops[ix]
                for edge in topology_record.edges:
                    assert tops[ix].graph.has_edge(*edge)
                for pix, particle_ix in enumerate(topology_record.particles):
                    particle = current_entries[particle_ix]
                    restored_particle = restored_topology.particles[pix]
                    assert np.array_equal(restored_particle.pos,
                                          np.array(particle.position))
                    assert restored_particle.type == particle.type

        # check whether restored particles are o.k.
        for entry in current_entries:
            # see if entry is available in current particles
            ix = 0
            for ix, particle in enumerate(current_particles):
                if particle.type == entry.type and np.array_equal(
                        particle.pos, entry.position):
                    break
            assert ix < len(current_particles
                            ), f"entry {entry} was not found in particles!"
            current_particles.pop(ix)
        assert len(current_particles) == 0

        sim.show_progress = False
        sim.run(500, 1e-3, show_summary=False)
Ejemplo n.º 21
0
def main(**kwargs):
    h5_fname = kwargs['fname']
    logger.info(f'Reading trajectory from {h5_fname}')
    trajectory = readdy.Trajectory(h5_fname)
    trajectory.convert_to_xyz()
    xyz_fname = f'{h5_fname}.xyz'
    n_lines = \
        int(check_output(['wc', '-l' , xyz_fname]).split()[0].decode("utf-8"))

    with open(xyz_fname, 'r') as f:
        n_atoms = int(f.readline().strip())

    start = 2
    n_frames = int(n_lines / (n_atoms + 2))
    f_folder = 'traj'
    try:
        rmtree(Path(f_folder))
    except FileNotFoundError:
        pass

    Path.mkdir(Path(f_folder))

    particles = trajectory.read_observable_particles()
    timesteps = particles[0]
    particle_types = particles[1]
    n_particles = pd.DataFrame()

    for i in range(n_frames - 1):
        data = pd.read_csv(xyz_fname,
                           delimiter='\t',
                           skiprows=start + i * (n_atoms + 2),
                           nrows=n_atoms,
                           header=None,
                           na_values='0').rename(columns={
                               0: 'type',
                               1: 'x',
                               2: 'y',
                               3: 'z'
                           })

        n_active_atoms = n_atoms - data.isnull().sum().values[-1]
        data = data.dropna().reset_index(drop=True)
        with open(f'{f_folder}/readdy.xyz.{i}', 'w') as f:
            f.write(f'{n_active_atoms}\n\n')
            data.to_csv(f,
                        index=False,
                        header=False,
                        float_format="%g",
                        sep='\t')
        n_particles = pd.concat(
            [n_particles,
             pd.DataFrame(count(particle_types[i])).T])

    n_particles = n_particles.reset_index(drop=True)
    fig, ax = plt.subplots()
    particle_names = [
        'unbonded',
        'gel',
        'released',
        'enzyme',
    ]
    for i in range(4):
        ax.plot(n_particles[i], label=particle_names[i])
    ax.set_xlabel('Timestep')
    ax.set_ylabel('Number of Particles')
    ax.legend(frameon=False)
    fig.savefig('particles.pdf')
    plt.show()
Ejemplo n.º 22
0
    def _run_readwrite_test_for(self, kernel, reaction_handler):
        traj_fname = os.path.join(self.tempdir, "traj_{}_{}.h5".format(kernel, reaction_handler))
        traj_fname2 = os.path.join(self.tempdir, "traj2_{}_{}.h5".format(kernel, reaction_handler))

        rds = readdy.ReactionDiffusionSystem(box_size=[10., 10., 10.])
        rds.add_species("A", diffusion_constant=1.0)
        rds.add_species("B", diffusion_constant=1.0)
        rds.reactions.add_conversion("myconversion", "A", "B", 1.0)
        rds.reactions.add_fusion("myfusion", "A", "A", "A", 2, .5)
        rds.reactions.add_fission("myfission", "A", "A", "A", 2, .5)
        rds.potentials.add_harmonic_repulsion("A", "A", 1., .2)
        sim = rds.simulation(kernel=kernel, reaction_handler=reaction_handler)
        sim.show_progress = False
        sim.output_file = traj_fname
        sim.add_particles("A", np.random.random((100, 3)))

        sim.observe.particle_positions(1)
        sim.observe.particles(1)
        sim.observe.rdf(1, bin_borders=np.arange(-5, 5, 1.), types_count_from=["A"], types_count_to=["A"],
                        particle_to_density=1. / rds.box_volume)
        sim.observe.number_of_particles(1, types=["B", "A"])
        reactions = []
        sim.observe.reactions(1, callback=lambda x: reactions.append(x))
        sim.observe.reaction_counts(1)
        sim.observe.forces(1)
        sim.observe.energy(1)
        pressures = []
        pressures_inactive = []

        class PressureCallback(object):

            def __init__(self):
                self.active = True

            def __call__(self, p):
                if self.active:
                    pressures.append(p)
                else:
                    pressures_inactive.append(p)

        pressure_callback = PressureCallback()

        sim.observe.pressure(1, callback=pressure_callback)
        sim.run(50, 1e-3, False)

        pressure_callback.active = False
        sim.output_file = traj_fname2
        sim.run(50, 1e-3, False)

        for fname in [traj_fname, traj_fname2]:
            traj = readdy.Trajectory(fname)

            np.testing.assert_almost_equal(traj.kbt, rds.kbt.magnitude)
            np.testing.assert_equal(traj.periodic_boundary_conditions, rds.periodic_boundary_conditions)
            np.testing.assert_almost_equal(traj.box_size, rds.box_size.magnitude)
            np.testing.assert_almost_equal(traj.box_volume, rds.box_volume.magnitude)

            time, positions = traj.read_observable_particle_positions()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(positions), 51)

            time, pressure = traj.read_observable_pressure()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(pressure), 51)
            np.testing.assert_equal(len(pressures), 51)
            np.testing.assert_equal(len(pressures_inactive), 51)
            if fname == traj_fname:
                np.testing.assert_array_almost_equal(pressure, np.array(pressures))
            else:
                np.testing.assert_array_almost_equal(pressure, np.array(pressures_inactive))

            time, types, ids, positions = traj.read_observable_particles()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(types), 51)
            np.testing.assert_equal(len(ids), 51)
            np.testing.assert_equal(len(positions), 51)

            time, bin_centers, rdf = traj.read_observable_rdf()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(bin_centers), len(np.arange(-5, 5, 1.)) - 1)
            np.testing.assert_equal(rdf.shape, (51, len(np.arange(-5, 5, 1)) - 1))

            time, counts = traj.read_observable_number_of_particles()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(counts), 51)

            time, records = traj.read_observable_reactions()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(records), 51)

            time, forces = traj.read_observable_forces()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(forces), 51)

            time, energy = traj.read_observable_energy()
            np.testing.assert_equal(len(time), 51)
            np.testing.assert_equal(len(energy), 51)

            time, counts = traj.read_observable_reaction_counts()
            np.testing.assert_equal(len(time), 51)

            counts_reactions = counts["reactions"]

            np.testing.assert_equal(len(counts_reactions.keys()), 3)
            for t, rr, counts_1, counts_2, counts_3 in zip(time, records, counts_reactions["myconversion"],
                                                           counts_reactions["myfusion"], counts_reactions["myfission"]):
                convrecords = [r for r in rr if r.reaction_label == "myconversion"]
                fusrecords = [r for r in rr if r.reaction_label == "myfusion"]
                fissrecords = [r for r in rr if r.reaction_label == "myfission"]
                np.testing.assert_equal(counts_1, len(convrecords),
                                        err_msg="conversion count mismatch: t={}, counts={}, nrecords={}, kernel={}"
                                        .format(t, counts_1, len(convrecords), kernel))
                np.testing.assert_equal(counts_2, len(fusrecords),
                                        err_msg="fusion count mismatch: t={}, counts={}, nrecords={}, kernel={}"
                                        .format(t, counts_2, len(fusrecords), kernel))
                np.testing.assert_equal(counts_3, len(fissrecords),
                                        err_msg="fission count mismatch: t={}, counts={}, nrecords={}, kernel={}"
                                        .format(t, counts_3, len(fissrecords), kernel))

            for curr_positions, curr_types, curr_ids, curr_forces in zip(positions, types, ids, forces):
                np.testing.assert_equal(len(curr_positions), len(curr_types))
                np.testing.assert_equal(len(curr_types), len(curr_ids))
                np.testing.assert_equal(len(curr_ids), len(curr_forces))
Ejemplo n.º 23
0
    # equilibration
    sim = system.simulation(kernel="SingleCPU")
    sim.add_particles("A", positions)

    sim.observe.particle_positions(200, callback=pos_callback, save=None)
    sim.observe.energy(50, callback=lambda x: print(x), save=None)

    sim.record_trajectory(stride=1)
    sim.output_file = "lj_eq.h5"
    if os.path.exists(sim.output_file):
        os.remove(sim.output_file)

    sim.run(n_steps=1000, timestep=2e-4)

    traj = readdy.Trajectory(sim.output_file)
    traj.convert_to_xyz(particle_radii={"A": 0.5})

    # measure
    sim = system.simulation(kernel="SingleCPU")
    sim.add_particles("A", positions)
    sim.observe.energy(50)
    sim.observe.forces(50)
    sim.observe.particle_positions(50)
    sim.observe.rdf(50,
                    bin_borders=np.linspace(0.5, 4., 40),
                    types_count_from="A",
                    types_count_to="A",
                    particle_to_density=density)

    sim.output_file = "lj_measure.h5"
Ejemplo n.º 24
0
    def _run_topology_observable_integration_test_for(self, kernel):
        traj_fname = os.path.join(self.tempdir, "traj_top_obs_integration_{}.h5".format(kernel))

        system = readdy.ReactionDiffusionSystem(box_size=[150, 150, 150])
        system.periodic_boundary_conditions = False, False, False

        system.add_species("Ligand", diffusion_constant=3.)
        system.add_species("Decay", diffusion_constant=1.)
        system.add_topology_species("T", diffusion_constant=1.)
        system.add_topology_species("unstable T", diffusion_constant=1.)

        system.reactions.add("decay: Decay ->", 1e20)
        system.potentials.add_box("Ligand", 10., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_box("Decay", 10., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_box("T", 10., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_box("unstable T", 10., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_harmonic_repulsion("Decay", "unstable T", force_constant=20.,
                                                 interaction_distance=2.)
        system.topologies.configure_harmonic_bond("T", "T", force_constant=20., length=2.)
        system.topologies.configure_harmonic_bond("unstable T", "unstable T", force_constant=20.,
                                                  length=2.)

        system.topologies.add_type("stable")
        system.topologies.add_type("intermediate")
        system.topologies.add_type("unstable")
        system.topologies.add_spatial_reaction(
            "encounter: stable(T) + (Ligand) -> intermediate(T) + (Ligand)",
            rate=10.0, radius=2.0
        )

        def intermediate_rate_function(_):
            return 1e3

        def intermediate_reaction_function(topology):
            recipe = readdy.StructuralReactionRecipe(topology)
            for v in topology.graph.vertices:
                recipe.change_particle_type(v, "unstable T")
            recipe.change_topology_type("unstable")
            return recipe

        system.topologies.add_structural_reaction(name="intermediate_reaction", topology_type="intermediate",
                                                  reaction_function=intermediate_reaction_function,
                                                  rate_function=intermediate_rate_function)

        def unstable_rate_function(_):
            return 1000.

        def unstable_reaction_function(topology):
            recipe = readdy.StructuralReactionRecipe(topology)
            index = np.random.randint(0, len(topology.particles))
            recipe.separate_vertex(index)
            recipe.change_particle_type(index, "Decay")
            recipe.change_particle_position(index, [0, 0, 0])
            return recipe

        system.topologies.add_structural_reaction("unstable_reaction", topology_type="unstable",
                                                  reaction_function=unstable_reaction_function,
                                                  rate_function=unstable_rate_function)
        simulation = system.simulation(kernel=kernel)
        n_topology_particles = 70
        positions = [[0, 0, 0], np.random.normal(size=3)]
        for i in range(n_topology_particles - 2):
            delta = positions[-1] - positions[-2]
            offset = np.random.normal(size=3) + delta
            offset = offset / np.linalg.norm(offset)
            positions.append(positions[-1] + 2. * offset)
        topology = simulation.add_topology(topology_type="stable", particle_types="T",
                                           positions=np.array(positions))
        graph = topology.get_graph()
        for i in range(len(graph.get_vertices()) - 1):
            graph.add_edge(i, i + 1)
        simulation.add_particles("Ligand", -6 * np.ones((5, 3)))
        simulation.output_file = traj_fname
        simulation.record_trajectory()
        simulation.observe.topologies(1)
        simulation.show_progress = False
        simulation.run(n_steps=100, timestep=1e-2, show_summary=False)

        t = readdy.Trajectory(simulation.output_file)
        entries = t.read()
        time, topology_records = t.read_observable_topologies()

        assert len(time) == len(entries)
        assert len(topology_records) == len(entries)

        time1, t_rec1 = t.read_observable_topologies(start=0, stop=len(time) // 3)
        assert(len(time1) == len(time) // 3)
        time2, t_rec2 = t.read_observable_topologies(start=len(time) // 3, stop=int(2 * len(time) // 3))
        assert(len(time2) == int(2 * len(time) // 3) - len(time) // 3)
        time3, t_rec3 = t.read_observable_topologies(start=int(2 * len(time) // 3), stop=len(time))
        assert(len(time3) == len(time) - int(2 * len(time) // 3))

        assert len(time) == len(time1) + len(time2) + len(time3)
        assert len(topology_records) == len(t_rec1) + len(t_rec2) + len(t_rec3)
        np.testing.assert_array_almost_equal(time, np.concatenate((time1, time2, time3)))

        for ix, recs in enumerate(t_rec1 + t_rec2 + t_rec3):
            assert len(recs) == len(topology_records[ix])
            for iy, rec in enumerate(recs):
                assert rec == topology_records[ix][iy]

        for frame in entries:
            for entry in frame:
                if entry.type == 'Decay':
                    np.testing.assert_array_almost_equal(entry.position, np.array([0, 0, 0]))

        for timestep, tops in zip(time, topology_records):
            current_edges = []
            for top in tops:
                for e1, e2 in top.edges:
                    ix1 = top.particles[e1]
                    ix2 = top.particles[e2]
                    current_edges.append((ix1, ix2))
                    p1 = entries[timestep][ix1]
                    p2 = entries[timestep][ix2]
                    assert p1.type == 'T' or p1.type == 'unstable T', \
                        "expected topology type but got {} -- {}".format(p1, p2)
                    assert p2.type == 'T' or p2.type == 'unstable T', \
                        "expected topology type but got {} -- {}".format(p1, p2)
Ejemplo n.º 25
0
def calc_accept_dimer(trajfile,potdict,r_react,weight_L,nL,nLtag):

    print("Processing trajectory: {}".format(trajfile))

    # Load trajectory
    try:
        traj = readdy.Trajectory(trajfile)
    except (OSError, ValueError) as e:
        print("OSError while loading trajectory for index {}".format(config_index))
        return None

    timestep, types, ids, positions = traj.read_observable_particles()
    # Define distance function for periodic box
    dist = lambda x1,x2,boxsize: util.dist(x1,x2,boxsize)
 
    lj_LL = potdict['lj_LL']
    lj_SL = potdict['lj_SL']
    #lj_SLL = potdict['lj_SLL']
    lj_CL = potdict['lj_CL']
    lj_CC = potdict['lj_CC']
    lj_CS = potdict['lj_CS']
    #lj_SLC = potdict['lj_SLC']

    tstart = 0
    tstop = timestep.shape[0]
    sample_freq = 1
    time_indices = range(tstart,tstop,sample_freq)
    react_prob = np.zeros((len(time_indices),))

    # Choose which ligands to label as ligands vs crowders, if applicable
    ids0 = np.array([traj.species_name(j) for j in types[0]])
    if nL!=nLtag:	# NEEDS FIXING

        indsAllL = np.char.equal(ids0,"L")
        indsR = np.char.equal(ids0,"R")

        posAllL = positions[0][indsAllL]
        posR = positions[0][indsR]


        dLR = util.dist(posAllL,posR,traj.box_size)
        closestLigand = np.argmin(dLR)

        choose_prob = np.ones(indsAllL.shape)
        choose_prob[indsR] = 0
        choose_prob[closestLigand] = 0
        if nLtag != 1:
            indsLbulk = np.random.choice(indsAllL.shape[0],size=nL-1,replace=False,p=choose_prob/np.sum(choose_prob))
   
        indsL = np.full(indsAllL.shape,False)
        if nLtag != 1:
            indsL[indsLbulk] = True
        indsL[closestLigand] = True

        indsC = np.full(indsAllL.shape,True)
        indsC[indsL] = False
        indsC[indsR] = False
    else:
        indsL = np.char.equal(ids0,"L")
        indsC = np.char.equal(ids0,"C")
        indsS = np.char.equal(ids0,"S")
        posLi = positions[0][indsL]
        posCi = positions[0][indsC]
        posSi = positions[0][indsS]


    # Loop over timepoints with step size sample_freq
    for ti,i in enumerate(time_indices):
        posLi = positions[i][indsL]
        posSi = positions[i][indsS]
        posCi = positions[i][indsC]

        # Get distances from receptor to all ligands along trajectory (w/ periodic boundaries)
        dLS = util.dist(posLi,posSi,traj.box_size)

        # Get distances from receptor to all crowders along trajectory (w/ periodic boundaries)
        dSC = util.dist(posCi,posSi,traj.box_size)

        # Calculate internal energy of receptor (in unbound state)
        Ereceptor = np.sum(lj_SL(dLS)) + np.sum(lj_CS(dSC))

        # Calculate reaction propensity
        react_propensity = doi_reaction_model(dLS,r_react)
        react_candidates = np.nonzero(react_propensity)[0]
        
        # Test binding event
        accept = 0
        p_no_react_i = 1.

        #for j in react_candidates:
        if len(react_candidates)>0:
            # Choose randomly from reaction candidates for test reaction
            j = random.choice(react_candidates)

            # Choose position for fussion reaction product accounting for periodic boundaries
            vecStoLi = util.wrapped_vector(posLi[j]-posSi,traj.box_size)
            rS_Li = np.linalg.norm(vecStoLi)
            dr = r_react - rS_Li

            drS = -weight_L * dr * vecStoLi/rS_Li
            drL = (1.-weight_L) * dr * vecStoLi/rS_Li

            posSb = util.wrapped_vector(posSi + drS,traj.box_size)
            posLb = util.wrapped_vector(posLi[j] + drL,traj.box_size)

            # Calculate needed intermolecular distances
            dLLj = util.dist(posLi[j],posLi[np.arange(len(posLi))!=j],traj.box_size)			# Ligand_j to other ligands
            dcrowderLj = util.dist(posLi[j],posCi,traj.box_size)					# Ligand_j to crowders
            dSbL = util.dist(posSb,posLi[np.arange(len(posLi))!=j],traj.box_size)		# Proposed bound receptor to other ligands
            dSbCrowder = util.dist(posSb,posCi,traj.box_size)					# Proposed bound receptor to crowders
            dLbL = util.dist(posLb,posLi[np.arange(len(posLi))!=j],traj.box_size)		# Proposed bound ligand to other ligands
            dLbCrowder = util.dist(posLb,posCi,traj.box_size)					# Proposed bound ligand to crowders


            ## Calculate energy of ligand_j before binding test move
            # Interaction energy between ligand_j and other ligands
            EligandjL = lj_LL(dLLj)

            # Interaction energy between ligand_j and crowders
            Eligandjcrowder = lj_CL(dcrowderLj)

            # Total interaction energy of ligand_j excluding interaction w/ receptor
            Eligandj = np.sum(EligandjL) + np.sum(Eligandjcrowder)

            # Interaction energy between ligand_j and receptor
            EligandjS = lj_SL(dLS[j])

            ## Calculate energy of test ligand after binding
            # Interaction energy of test particle with other ligands
            ELbL = lj_LL(dLbL)

            # Interaction energy of test particle with crowders
            ELbCrowder = lj_CL(dLbCrowder)

            # Total interaction energy of test ligand particle
            ELb = np.sum(ELbL) + np.sum(ELbCrowder)

            ## Calculate energy of test receptor after binding
            # Interaction energy of test particle with other ligands
            ESbL = lj_SL(dSbL)

            # Interaction energy of test particle with crowders
            ESbCrowder = lj_CS(dSbCrowder)

            # Total interaction energy of test receptor particle
            ESb = np.sum(ESbL) + np.sum(ESbCrowder)

            # Interaction energy between test ligand and test receptor (in the complex)
            ESbLb = lj_SL(r_react)

            # Total energy for the complex
            EComplex = ESb + ELb + ESbLb

            # Energy change for fussion reaction
            dE = EComplex - (Eligandj + Ereceptor)

            # Add back energy of fusion educt internal energy since accounted for by proposal density
            dE = dE + EligandjS

            if dE>0:
                p_no_react_i *= 1.-np.exp(-dE)
            else:
                p_no_react_i *= 0
            

        react_prob[ti] = 1. - p_no_react_i

    return react_prob
Ejemplo n.º 26
0
    def _run_topology_observable_test_for(self, kernel):
        traj_fname = os.path.join(self.tempdir, "traj_top_obs_{}.h5".format(kernel))
        system = readdy.ReactionDiffusionSystem(box_size=[300, 300, 300])
        system.periodic_boundary_conditions = False, False, False

        system.add_species("Decay", diffusion_constant=.01)
        system.add_topology_species("unstable T", diffusion_constant=.01)
        system.reactions.add("decay: Decay ->", .1)
        system.potentials.add_box("Decay", 100., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_box("unstable T", 100., [-70, -70, -70], [130, 130, 130])
        system.potentials.add_harmonic_repulsion("Decay", "unstable T", force_constant=20.,
                                                 interaction_distance=2.)
        system.topologies.configure_harmonic_bond("unstable T", "unstable T", force_constant=20.,
                                                  length=2.)

        system.topologies.add_type("unstable")

        def unstable_rate_function(_):
            return .1

        def unstable_reaction_function(topology):
            recipe = readdy.StructuralReactionRecipe(topology)
            index = np.random.randint(0, len(topology.particles))
            recipe.separate_vertex(index)
            recipe.change_particle_type(index, "Decay")
            return recipe

        system.topologies.add_structural_reaction(name="unstable_reaction", topology_type="unstable",
                                                  reaction_function=unstable_reaction_function,
                                                  rate_function=unstable_rate_function)
        simulation = system.simulation(kernel=kernel)

        n_topology_particles = 70
        positions = [[0, 0, 0], np.random.normal(size=3)]
        for i in range(n_topology_particles - 2):
            delta = positions[-1] - positions[-2]
            offset = np.random.normal(size=3) + delta
            offset = offset / np.linalg.norm(offset)
            positions.append(positions[-1] + 2. * offset)
        topology = simulation.add_topology(topology_type="unstable", particle_types="unstable T",
                                           positions=np.array(positions))
        graph = topology.get_graph()
        for i in range(len(graph.get_vertices()) - 1):
            graph.add_edge(i, i + 1)
            simulation.output_file = traj_fname

        topology_records = []
        simulation.record_trajectory()
        simulation.observe.topologies(1, callback=lambda x: topology_records.append(x))
        simulation.show_progress = False
        n_steps = 100
        simulation.run(n_steps=n_steps, timestep=1e-1, show_summary=False)

        traj = readdy.Trajectory(simulation.output_file)

        time, tops = traj.read_observable_topologies()

        entries = traj.read()

        np.testing.assert_equal(len(time), n_steps + 1)

        for ix, records in enumerate(topology_records):
            np.testing.assert_equal(len(records), len(tops[ix]))
            for record, recordedRecord in zip(records, tops[ix]):
                np.testing.assert_equal(record.particles, recordedRecord.particles,
                                        err_msg="observable callback: {}, file: {}".format(record.particles,
                                                                                           recordedRecord.particles))
                np.testing.assert_equal(record.edges, recordedRecord.edges)
                for edge in record.edges:
                    p1 = entries[ix][record.particles[edge[0]]]
                    p2 = entries[ix][record.particles[edge[1]]]

                    assert p1.type == 'unstable T', "expected topology type but got {}".format(p1)
                    assert p2.type == 'unstable T', "expected topology type but got {}".format(p2)
Ejemplo n.º 27
0
    simulation.add_particles("C", positions=positions_C)
    simulation.add_particles("L", positions=positions_L)
    simulation.add_particles("S", positions=positions_S)

    #### Define observables for simulation ####
    simulation.record_trajectory(stride=1000)
    simulation.observe.number_of_particles(stride=1, types=["L", "S", "C"])

    simulation.observe.particles(stride=100, callback=None)
    #simulation.observe.reaction_counts(stride=100)

    #simulation.observe.reactions(stride=100)

    if os.path.exists(simulation.output_file):
        os.remove(simulation.output_file)

    #-------------------------------------------------------------------------------------------------------
    #### Run simulation ####
    #-------------------------------------------------------------------------------------------------------
    simulation.run(n_steps=n_steps, timestep=1e-4)

    #### Save trajectory ####
    trajectory = readdy.Trajectory(outfile)
    trajectory.convert_to_xyz(particle_radii={
        'C': r_C,
        'L': r_L,
        'S': r_S,
        'SA': r_SL
    })
    #trajectory.convert_to_xyz(particle_radii={'L': 1.,'S': 1.,'SL': 1.})
Ejemplo n.º 28
0
import numpy as np
import matplotlib.pyplot as plt
import readdy
#----------------------------------------------------------------------------------------

if __name__=="__main__":

    basedir = './run_bulk_nL1_nC0_kOn10_kOff1/trajectory_20/'
    traj_file = basedir + 'LR_out_bulk.h5'

    traj = readdy.Trajectory(traj_file)

    periodic_directions = [0,1,2]
    timestep = 1e-4

    time_sim, counts = traj.read_observable_number_of_particles()

    time = time_sim * timestep 

    counts = counts.astype(np.int8)	# copy number of inactive sensor at each timestep


    fig, ax = plt.subplots(1,1,figsize=(8,3))

    #ax.plot(time[20000:22000]-time[20000],1.-counts[20000:22000,1],label="S")
    ax.plot(time,1.-counts[:,1],label="SL complex")

    ax.set_xlabel("Time",fontsize=18)    
    ax.set_ylabel("Receptor Occupacy",fontsize=18)    

    fig.tight_layout()
Ejemplo n.º 29
0
    def _test_kernel(self, kernel):

        system = readdy.ReactionDiffusionSystem(box_size=[20, 20, 20])
        system.topologies.add_type("T1")
        system.topologies.add_type("T2")
        system.add_species("A")
        system.add_topology_species("B")
        system.topologies.configure_harmonic_bond("B", "B", 1., .1)
        system.add_topology_species("C")
        system.topologies.configure_harmonic_bond("C", "C", 1., .1)
        system.topologies.add_spatial_reaction(
            "attach: T1(B) + (A) -> T1(B--B)", rate=1e-1, radius=.5)

        def flip1(topology):
            recipe = readdy.StructuralReactionRecipe(topology)
            for v in topology.graph.vertices:
                recipe.change_particle_type(v, "C")
            recipe.change_topology_type("T2")
            return recipe

        def flip2(topology):
            recipe = readdy.StructuralReactionRecipe(topology)
            for v in topology.graph.vertices:
                recipe.change_particle_type(v, "B")
            recipe.change_topology_type("T1")
            return recipe

        system.topologies.add_structural_reaction("flip_types_1", "T1", flip1,
                                                  lambda x: 5e-2)
        system.topologies.add_structural_reaction("flip_types_2", "T2", flip2,
                                                  lambda x: 5e-2)

        sim = system.simulation(kernel=kernel)
        sim.output_file = os.path.join(self.dir, "out_{}.h5".format(kernel))

        collected_counts = []

        def callback(results):
            nonlocal collected_counts
            collected_counts.append(results)

        sim.observe.reaction_counts(1, callback=callback)
        sim.observe.number_of_particles(1, types=["A", "B", "C"])

        sim.add_particles("A", np.random.normal(scale=1, size=(1000, 3)))

        for _ in range(10):
            sim.add_topology("T1", "B", np.random.normal(size=(1, 3)))

        sim.run(1000, timestep=1, show_summary=False)

        traj = readdy.Trajectory(sim.output_file)

        times, n_particles = traj.read_observable_number_of_particles()
        times2, counts = traj.read_observable_reaction_counts()

        np.testing.assert_array_equal(times, times2)

        assert not counts["reactions"]
        spatials = counts["spatial_topology_reactions"]

        n_spatial = 0

        cA_prev = None
        for t, (cA, cB, cC), cc in zip(times, n_particles, collected_counts):
            assert cA_prev is None or cA <= cA_prev
            np.testing.assert_equal(cA + cB + cC, 1010)
            cc_normal = cc[0]
            assert not cc_normal
            cc_spatial = cc[1]
            cc_structural = cc[2]

            n_spatial += spatials["attach"][t]
            assert cA == 1000 - n_spatial, f"Got {cA} A particles, expected {1000 - n_spatial}, at time t {t}"

            for sp in cc_spatial.keys():
                recorded = spatials[sp][t]
                assert cc_spatial[
                    sp] == recorded, f"Got {cc_spatial[sp]} != {recorded} (t={t})"
            for st in cc_structural.keys():
                recorded = counts["structural_topology_reactions"][st][t]
                assert cc_structural[
                    st] == recorded, f"Got {cc_structural[st]} != {recorded} (t={t})"
            cA_prev = cA