lr_decay = (final_lr / lr)**(1. / n_epoch) # layer's parameters n_inputs = 27 n_units = 2000 n_classes = 27 n_hidden_layer = 1 # binary/ternary weights for LSTM binary_training = True ternary_training = False stochastic_training = True print('Preparing the dataset') train_set = get_stream(which_set="train", batch_size=batch_size, length=length, augment=True) valid_set = get_stream(which_set="valid", batch_size=batch_size, length=length) test_set = get_stream(which_set="test", batch_size=batch_size, length=length) print('Creating the model') class create_model(Network): def __init__(self, rng): Network.__init__(self, n_hidden_layer=n_hidden_layer,
final_lr = 0.001 lr_decay = (final_lr / lr)**(1. / n_epoch) # layer's parameters n_inputs = 1 n_units = 100 n_classes = 10 n_hidden_layer = 1 # binary/ternary weights for LSTM binary_training = False ternary_training = False stochastic_training = True print('Preparing the dataset') train_set = get_stream(which_set="train", batch_size=batch_size) valid_set = get_stream(which_set="valid", batch_size=batch_size) test_set = get_stream(which_set="test", batch_size=batch_size) print('Creating the model') class create_model(Network): def __init__(self, rng): Network.__init__(self, n_hidden_layer=n_hidden_layer, BN_LSTM=BN_LSTM, length=length) print("LSTM layer:") self.layer.append(