def test_box(self):
     env = Gym(env_name="CartPole-v0")
     obs_preprocessor = env.get_obs_preprocessor()
     obs = env.reset()
     state = obs_preprocessor(obs)
     self.assertTrue(state.has_float_features_only)
     self.assertEqual(state.float_features.shape, (1, obs.shape[0]))
     self.assertEqual(state.float_features.dtype, torch.float32)
     self.assertEqual(state.float_features.device, torch.device("cpu"))
     npt.assert_array_almost_equal(obs, state.float_features.squeeze(0))
Ejemplo n.º 2
0
def run_test_offline(
    env_name: str,
    model: ModelManager__Union,
    replay_memory_size: int,
    num_batches_per_epoch: int,
    num_train_epochs: int,
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool,
):
    env = Gym(env_name=env_name)
    env.seed(SEED)
    env.action_space.seed(SEED)
    normalization = build_normalizer(env)
    logger.info(f"Normalization is: \n{pprint.pformat(normalization)}")

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )

    # first fill the replay buffer to burn_in
    replay_buffer = ReplayBuffer(replay_capacity=replay_memory_size,
                                 batch_size=trainer.minibatch_size)
    # always fill full RB
    fill_replay_buffer(env=env,
                       replay_buffer=replay_buffer,
                       desired_size=replay_memory_size)

    device = torch.device("cuda") if use_gpu else None
    # pyre-fixme[6]: Expected `device` for 2nd param but got `Optional[torch.device]`.
    trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        trainer, device, env)

    writer = SummaryWriter()
    with summary_writer_context(writer):
        for epoch in range(num_train_epochs):
            logger.info(f"Evaluating before epoch {epoch}: ")
            eval_rewards = evaluate_cem(env, manager, 1)
            for _ in tqdm(range(num_batches_per_epoch)):
                train_batch = replay_buffer.sample_transition_batch()
                preprocessed_batch = trainer_preprocessor(train_batch)
                trainer.train(preprocessed_batch)

    logger.info(f"Evaluating after training for {num_train_epochs} epochs: ")
    eval_rewards = evaluate_cem(env, manager, num_eval_episodes)
    mean_rewards = np.mean(eval_rewards)
    assert (mean_rewards >= passing_score_bar
            ), f"{mean_rewards} doesn't pass the bar {passing_score_bar}."
 def test_box_cuda(self):
     env = Gym(env_name="CartPole-v0")
     device = torch.device("cuda")
     obs_preprocessor = env.get_obs_preprocessor(device=device)
     obs = env.reset()
     state = obs_preprocessor(obs)
     self.assertTrue(state.has_float_features_only)
     self.assertEqual(state.float_features.shape, (1, obs.shape[0]))
     self.assertEqual(state.float_features.dtype, torch.float32)
     # `device` doesn't have index. So we need this.
     x = torch.zeros(1, device=device)
     self.assertEqual(state.float_features.device, x.device)
     npt.assert_array_almost_equal(obs,
                                   state.float_features.cpu().squeeze(0))
Ejemplo n.º 4
0
    def test_cartpole_reinforce(self):
        # TODO(@badri) Parameterize this test
        env = Gym("CartPole-v0")
        norm = build_normalizer(env)

        from reagent.net_builder.discrete_dqn.fully_connected import FullyConnected

        net_builder = FullyConnected(sizes=[8], activations=["linear"])
        cartpole_scorer = net_builder.build_q_network(
            state_feature_config=None,
            state_normalization_data=norm["state"],
            output_dim=len(norm["action"].dense_normalization_parameters),
        )

        from reagent.gym.policies.samplers.discrete_sampler import SoftmaxActionSampler

        policy = Policy(scorer=cartpole_scorer, sampler=SoftmaxActionSampler())

        from reagent.training.reinforce import Reinforce, ReinforceParams
        from reagent.optimizer.union import classes

        trainer = Reinforce(
            policy,
            ReinforceParams(gamma=0.995,
                            optimizer=classes["Adam"](lr=5e-3,
                                                      weight_decay=1e-3)),
        )
        run_test_episode_buffer(
            env,
            policy,
            trainer,
            num_train_episodes=500,
            passing_score_bar=180,
            num_eval_episodes=100,
        )
Ejemplo n.º 5
0
def evaluate_gym(
    env_name: str,
    model: ModelManager__Union,
    publisher: ModelPublisher__Union,
    num_eval_episodes: int,
    passing_score_bar: float,
    max_steps: Optional[int] = None,
):
    publisher_manager = publisher.value
    assert isinstance(
        publisher_manager, FileSystemPublisher
    ), f"publishing manager is type {type(publisher_manager)}, not FileSystemPublisher"
    env = Gym(env_name=env_name)
    torchscript_path = publisher_manager.get_latest_published_model(
        model.value)
    jit_model = torch.jit.load(torchscript_path)
    policy = create_predictor_policy_from_model(jit_model)
    agent = Agent.create_for_env_with_serving_policy(env, policy)
    rewards = evaluate_for_n_episodes(n=num_eval_episodes,
                                      env=env,
                                      agent=agent,
                                      max_steps=max_steps)
    avg_reward = np.mean(rewards)
    logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}.\n"
                f"List of rewards: {rewards}")
    assert (avg_reward >= passing_score_bar
            ), f"{avg_reward} fails to pass the bar of {passing_score_bar}!"
    return
Ejemplo n.º 6
0
def offline_gym(
    env_name: str,
    pkl_path: str,
    num_train_transitions: int,
    max_steps: Optional[int],
    seed: Optional[int] = None,
):
    """
    Generate samples from a DiscreteRandomPolicy on the Gym environment and
    saves results in a pandas df parquet.
    """
    initialize_seed(seed)
    env = Gym(env_name=env_name)

    replay_buffer = ReplayBuffer(replay_capacity=num_train_transitions,
                                 batch_size=1)
    fill_replay_buffer(env, replay_buffer, num_train_transitions)
    if isinstance(env.action_space, gym.spaces.Discrete):
        is_discrete_action = True
    else:
        assert isinstance(env.action_space, gym.spaces.Box)
        is_discrete_action = False
    df = replay_buffer_to_pre_timeline_df(is_discrete_action, replay_buffer)
    logger.info(f"Saving dataset with {len(df)} samples to {pkl_path}")
    df.to_pickle(pkl_path)
Ejemplo n.º 7
0
    def test_random_vs_lqr(self):
        """
        Test random actions vs. a LQR controller. LQR controller should perform
        much better than random actions in the linear dynamics environment.
        """
        env = Gym(env_name="LinearDynamics-v0")
        num_test_episodes = 500

        def random_policy(env, state):
            return np.random.uniform(
                env.action_space.low, env.action_space.high, env.action_dim
            )

        def lqr_policy(env, state):
            # Four matrices that characterize the environment
            A, B, Q, R = env.A, env.B, env.Q, env.R
            # Solve discrete algebraic Riccati equation:
            M = linalg.solve_discrete_are(A, B, Q, R)
            K = np.dot(
                linalg.inv(np.dot(np.dot(B.T, M), B) + R), (np.dot(np.dot(B.T, M), A))
            )
            state = state.reshape((-1, 1))
            action = -K.dot(state).squeeze()
            return action

        mean_acc_rws_random = self.run_n_episodes(env, num_test_episodes, random_policy)
        mean_acc_rws_lqr = self.run_n_episodes(env, num_test_episodes, lqr_policy)
        logger.info(f"Mean acc. reward of random policy: {mean_acc_rws_random}")
        logger.info(f"Mean acc. reward of LQR policy: {mean_acc_rws_lqr}")
        assert mean_acc_rws_lqr > mean_acc_rws_random
Ejemplo n.º 8
0
 def test_pocman(self):
     env = Gym(env_name="Pocman-v0")
     env.seed(313)
     mean_acc_reward = self._test_env(env)
     assert -80 <= mean_acc_reward <= -70
Ejemplo n.º 9
0
 def test_string_game(self):
     env = Gym(env_name="StringGame-v0")
     env.seed(313)
     mean_acc_reward = self._test_env(env)
     assert 0.1 >= mean_acc_reward
Ejemplo n.º 10
0
def train_seq2reward_and_compute_reward_mse(
    env_name: str,
    model: ModelManager__Union,
    num_train_transitions: int,
    num_test_transitions: int,
    seq_len: int,
    batch_size: int,
    num_train_epochs: int,
    use_gpu: bool,
    saved_seq2reward_path: Optional[str] = None,
):
    """ Train Seq2Reward Network and compute reward mse. """
    env = Gym(env_name=env_name)
    env.seed(SEED)

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=build_normalizer(env),
    )

    device = "cuda" if use_gpu else "cpu"
    # pyre-fixme[6]: Expected `device` for 2nd param but got `str`.
    trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        trainer, device, env)
    test_replay_buffer = ReplayBuffer(
        replay_capacity=num_test_transitions,
        batch_size=batch_size,
        stack_size=seq_len,
        return_everything_as_stack=True,
    )
    fill_replay_buffer(env, test_replay_buffer, num_test_transitions)

    if saved_seq2reward_path is None:
        # train from scratch
        trainer = train_seq2reward(
            env=env,
            trainer=trainer,
            trainer_preprocessor=trainer_preprocessor,
            num_train_transitions=num_train_transitions,
            seq_len=seq_len,
            batch_size=batch_size,
            num_train_epochs=num_train_epochs,
            test_replay_buffer=test_replay_buffer,
        )
    else:
        # load a pretrained model, and just evaluate it
        trainer.seq2reward_network.load_state_dict(
            torch.load(saved_seq2reward_path))
    state_dim = env.observation_space.shape[0]
    with torch.no_grad():
        trainer.seq2reward_network.eval()
        test_batch = test_replay_buffer.sample_transition_batch(
            batch_size=test_replay_buffer.size)
        preprocessed_test_batch = trainer_preprocessor(test_batch)
        adhoc_action_padding(preprocessed_test_batch, state_dim=state_dim)
        losses = trainer.get_loss(preprocessed_test_batch)
        detached_losses = losses.cpu().detach().item()
        trainer.seq2reward_network.train()
    return detached_losses
Ejemplo n.º 11
0
def train_mdnrnn_and_train_on_embedded_env(
    env_name: str,
    embedding_model: ModelManager__Union,
    num_embedding_train_transitions: int,
    seq_len: int,
    batch_size: int,
    num_embedding_train_epochs: int,
    train_model: ModelManager__Union,
    num_state_embed_transitions: int,
    num_agent_train_epochs: int,
    num_agent_eval_epochs: int,
    use_gpu: bool,
    passing_score_bar: float,
    # pyre-fixme[9]: saved_mdnrnn_path has type `str`; used as `None`.
    saved_mdnrnn_path: str = None,
):
    """ Train an agent on embedded states by the MDNRNN. """
    env = Gym(env_name=env_name)
    env.seed(SEED)

    embedding_manager = embedding_model.value
    embedding_trainer = embedding_manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=build_normalizer(env),
    )

    device = "cuda" if use_gpu else "cpu"
    embedding_trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        embedding_trainer,
        # pyre-fixme[6]: Expected `device` for 2nd param but got `str`.
        device,
        env,
    )
    if saved_mdnrnn_path is None:
        # train from scratch
        embedding_trainer = train_mdnrnn(
            env=env,
            trainer=embedding_trainer,
            trainer_preprocessor=embedding_trainer_preprocessor,
            num_train_transitions=num_embedding_train_transitions,
            seq_len=seq_len,
            batch_size=batch_size,
            num_train_epochs=num_embedding_train_epochs,
        )
    else:
        # load a pretrained model, and just evaluate it
        embedding_trainer.memory_network.mdnrnn.load_state_dict(
            torch.load(saved_mdnrnn_path))

    # create embedding dataset
    embed_rb, state_min, state_max = create_embed_rl_dataset(
        env=env,
        memory_network=embedding_trainer.memory_network,
        num_state_embed_transitions=num_state_embed_transitions,
        batch_size=batch_size,
        seq_len=seq_len,
        hidden_dim=embedding_trainer.params.hidden_size,
        use_gpu=use_gpu,
    )
    embed_env = StateEmbedEnvironment(
        gym_env=env,
        mdnrnn=embedding_trainer.memory_network,
        max_embed_seq_len=seq_len,
        state_min_value=state_min,
        state_max_value=state_max,
    )
    agent_manager = train_model.value
    agent_trainer = agent_manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        # pyre-fixme[6]: Expected `EnvWrapper` for 1st param but got
        #  `StateEmbedEnvironment`.
        normalization_data_map=build_normalizer(embed_env),
    )
    device = "cuda" if use_gpu else "cpu"
    agent_trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        agent_trainer,
        # pyre-fixme[6]: Expected `device` for 2nd param but got `str`.
        device,
        env,
    )
    num_batch_per_epoch = embed_rb.size // batch_size
    for epoch in range(num_agent_train_epochs):
        for _ in tqdm(range(num_batch_per_epoch), desc=f"epoch {epoch}"):
            batch = embed_rb.sample_transition_batch(batch_size=batch_size)
            preprocessed_batch = agent_trainer_preprocessor(batch)
            agent_trainer.train(preprocessed_batch)

    # evaluate model
    rewards = []
    policy = agent_manager.create_policy(serving=False)
    # pyre-fixme[6]: Expected `EnvWrapper` for 1st param but got
    #  `StateEmbedEnvironment`.
    agent = Agent.create_for_env(embed_env, policy=policy, device=device)
    # num_processes=1 needed to avoid workers from dying on CircleCI tests
    rewards = evaluate_for_n_episodes(
        n=num_agent_eval_epochs,
        # pyre-fixme[6]: Expected `EnvWrapper` for 2nd param but got
        #  `StateEmbedEnvironment`.
        env=embed_env,
        agent=agent,
        num_processes=1,
    )
    assert (np.mean(rewards) >= passing_score_bar
            ), f"average reward doesn't pass our bar {passing_score_bar}"
    return rewards
Ejemplo n.º 12
0
def train_mdnrnn_and_compute_feature_stats(
    env_name: str,
    model: ModelManager__Union,
    num_train_transitions: int,
    num_test_transitions: int,
    seq_len: int,
    batch_size: int,
    num_train_epochs: int,
    use_gpu: bool,
    saved_mdnrnn_path: Optional[str] = None,
):
    """ Train MDNRNN Memory Network and compute feature importance/sensitivity. """
    env: gym.Env = Gym(env_name=env_name)
    env.seed(SEED)

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=build_normalizer(env),
    )

    device = "cuda" if use_gpu else "cpu"
    # pyre-fixme[6]: Expected `device` for 2nd param but got `str`.
    trainer_preprocessor = make_replay_buffer_trainer_preprocessor(
        trainer, device, env)
    test_replay_buffer = ReplayBuffer(
        replay_capacity=num_test_transitions,
        batch_size=batch_size,
        stack_size=seq_len,
        return_everything_as_stack=True,
    )
    fill_replay_buffer(env, test_replay_buffer, num_test_transitions)

    if saved_mdnrnn_path is None:
        # train from scratch
        trainer = train_mdnrnn(
            env=env,
            trainer=trainer,
            trainer_preprocessor=trainer_preprocessor,
            num_train_transitions=num_train_transitions,
            seq_len=seq_len,
            batch_size=batch_size,
            num_train_epochs=num_train_epochs,
            test_replay_buffer=test_replay_buffer,
        )
    else:
        # load a pretrained model, and just evaluate it
        trainer.memory_network.mdnrnn.load_state_dict(
            torch.load(saved_mdnrnn_path))

    with torch.no_grad():
        trainer.memory_network.mdnrnn.eval()
        test_batch = test_replay_buffer.sample_transition_batch(
            batch_size=test_replay_buffer.size)
        preprocessed_test_batch = trainer_preprocessor(test_batch)
        feature_importance = calculate_feature_importance(
            env=env,
            trainer=trainer,
            use_gpu=use_gpu,
            test_batch=preprocessed_test_batch,
        )

        feature_sensitivity = calculate_feature_sensitivity(
            env=env,
            trainer=trainer,
            use_gpu=use_gpu,
            test_batch=preprocessed_test_batch,
        )

        trainer.memory_network.mdnrnn.train()
    return feature_importance, feature_sensitivity