Ejemplo n.º 1
0
            delta = sample_dict['reward'][i] + gamma * sample_dict[
                'value_estimate'][i + 1].numpy() * sample_dict['not_done'][
                    i] - sample_dict['value_estimate'][i].numpy()
            gae = delta + gamma * my_lambda * sample_dict['not_done'][i] * gae
            # Insert advantage in front to get correct order
            sample_dict['advantage'].insert(0, gae)
        # Center advantage around zero
        sample_dict['advantage'] -= np.mean(sample_dict['advantage'])

        # Remove keys that are no longer used
        sample_dict.pop('value_estimate')
        sample_dict.pop('state_new')
        sample_dict.pop('reward')
        sample_dict.pop('not_done')

        samples = dict_to_dict_of_datasets(sample_dict,
                                           batch_size=optimization_batch_size)

        print('optimizing...')

        actor_losses = []
        critic_losses = []
        losses = []

        for state_batch, action_batch, advantage_batch, returns_batch, log_prob_batch in zip(
                samples['state'], samples['action'], samples['advantage'],
                samples['monte_carlo'], samples['log_prob']):
            with tf.GradientTape() as tape:
                #print('ACTION:\n',action_batch)
                # Old policy
                old_log_prob = log_prob_batch
                #print('OLD_LOGPROB:\n',old_log_prob)
Ejemplo n.º 2
0
    agent = manager.get_agent()

    for e in range(epochs):

        # training core

        # experience replay
        print("collecting experience..")
        data = manager.get_data(total_steps=100)
        manager.store_in_buffer(data)

        # sample data to optimize on from buffer
        sample_dict = manager.sample(sample_size)
        print(f"collected data for: {sample_dict.keys()}")
        # create and batch tf datasets
        data_dict = dict_to_dict_of_datasets(sample_dict, batch_size=64)
        print("optimizing...")

        # for each batch
        for state, action, reward, state_new, not_done in zip(
                data_dict['state'], data_dict['action'], data_dict['reward'],
                data_dict['state_new'], data_dict['not_done']):
            q_target = tf.cast(reward, tf.float64) + (
                tf.cast(not_done, tf.float64) *
                tf.cast(gamma * agent.max_q(state_new), tf.float64))

            with tf.GradientTape() as tape:
                prediction = agent.q_val(state, action)
                loss = loss_function(prediction, q_target)
                gradients = tape.gradient(loss,
                                          agent.model.trainable_variables)
Ejemplo n.º 3
0
def train_td3(args, model, action_dimension=None):

    print(args)

    tf.keras.backend.set_floatx('float32')

    ray.init(log_to_driver=False)

    # hyper parameters
    buffer_size = args.buffer_size  # 10e6 in their repo, not possible with our ram
    epochs = args.epochs
    saving_path = os.getcwd() + "/" + args.saving_dir
    saving_after = 5
    sample_size = args.sample_size
    optim_batch_size = args.batch_size
    gamma = args.gamma
    test_steps = 100  # 1000 in their repo
    policy_delay = 2
    rho = .046
    policy_noise = args.policy_noise
    policy_noise_clip = .5
    msg_dim = args.msg_dim  # 32 in their repo
    learning_rate = args.learning_rate

    save_args(args, saving_path)

    env_test_instance = gym.make('BipedalWalker-v3')
    if action_dimension is None:
        action_dimension = copy(env_test_instance.action_space.shape[0])
    model_kwargs = {
        # action dimension for modular actions
        'action_dimension': action_dimension,
        'min_action': copy(env_test_instance.action_space.low)[0],
        'max_action': copy(env_test_instance.action_space.high)[0],
        'msg_dimension': msg_dim,
        'fix_sigma': True,
        'hidden_units': args.hidden_units
    }
    del env_test_instance

    manager = SampleManager(model,
                            'BipedalWalker-v3',
                            num_parallel=(os.cpu_count() - 1),
                            total_steps=150,
                            action_sampling_type="continuous_normal_diagonal",
                            is_tf=True,
                            model_kwargs=model_kwargs)

    optim_keys = [
        'state',
        'action',
        'reward',
        'state_new',
        'not_done',
    ]

    manager.initialize_buffer(buffer_size, optim_keys)

    manager.initialize_aggregator(path=saving_path,
                                  saving_after=saving_after,
                                  aggregator_keys=["loss", "reward"])

    agent = manager.get_agent()

    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

    # fill buffer
    print("Filling buffer before training..")
    while len(manager.buffer.buffer[
            manager.buffer.keys[0]]) < manager.buffer.size:
        # Gives you state action reward trajectories
        data = manager.get_data()
        manager.store_in_buffer(data)

    # track time while training
    timer = time.time()
    last_t = timer

    target_agent = manager.get_agent()
    for e in range(epochs):
        # off policy
        sample_dict = manager.sample(sample_size, from_buffer=True)
        print(f"collected data for: {sample_dict.keys()}")

        # cast values to float32 and create data dict
        sample_dict['state'] = tf.cast(sample_dict['state'], tf.float32)
        sample_dict['action'] = tf.cast(sample_dict['action'], tf.float32)
        sample_dict['reward'] = tf.cast(sample_dict['reward'], tf.float32)
        sample_dict['state_new'] = tf.cast(sample_dict['state_new'],
                                           tf.float32)
        sample_dict['not_done'] = tf.cast(sample_dict['not_done'], tf.float32)
        data_dict = dict_to_dict_of_datasets(sample_dict,
                                             batch_size=optim_batch_size)

        total_loss = 0
        for state, action, reward, state_new, not_done in \
                zip(data_dict['state'],
                    data_dict['action'],
                    data_dict['reward'],
                    data_dict['state_new'],
                    data_dict['not_done']):

            action_new = target_agent.act(state_new)
            # add noise to action_new
            action_new = action_new + tf.clip_by_value(
                tf.random.normal(action_new.shape, 0., policy_noise),
                -policy_noise_clip, policy_noise_clip)
            # clip action_new to action space
            action_new = tf.clip_by_value(
                action_new, manager.env_instance.action_space.low,
                manager.env_instance.action_space.high)

            # calculate target with double-Q-learning
            state_action_new = tf.concat([state_new, action_new], axis=-1)
            q_values0 = target_agent.model.critic0(state_action_new)
            q_values1 = target_agent.model.critic1(state_action_new)
            q_values = tf.concat([q_values0, q_values1], axis=-1)
            q_targets = tf.squeeze(tf.reduce_min(q_values, axis=-1))
            critic_target = reward + gamma * not_done * q_targets

            state_action = tf.concat([state, action], axis=-1)

            # update critic 0
            with tf.GradientTape() as tape:
                q_output = agent.model.critic0(state_action)
                loss = tf.keras.losses.MSE(tf.squeeze(critic_target),
                                           tf.squeeze(q_output))

            total_loss += loss
            gradients = tape.gradient(loss,
                                      agent.model.critic0.trainable_variables)
            optimizer.apply_gradients(
                zip(gradients, agent.model.critic0.trainable_variables))

            # update critic 1
            with tf.GradientTape() as tape:
                q_output = agent.model.critic1(state_action)
                loss = tf.keras.losses.MSE(tf.squeeze(critic_target),
                                           tf.squeeze(q_output))

            total_loss += loss
            gradients = tape.gradient(loss,
                                      agent.model.critic1.trainable_variables)
            optimizer.apply_gradients(
                zip(gradients, agent.model.critic1.trainable_variables))

            # update actor with delayed policy update
            if e % policy_delay == 0:
                with tf.GradientTape() as tape:
                    actor_output = agent.model.actor(state)
                    action = reparam_action(actor_output,
                                            agent.model.action_dimension,
                                            agent.model.min_action,
                                            agent.model.max_action)
                    state_action = tf.concat([state, action], axis=-1)
                    q_val = agent.model.critic0(state_action)
                    actor_loss = -tf.reduce_mean(q_val)

                total_loss += actor_loss
                actor_gradients = tape.gradient(
                    actor_loss, agent.model.actor.trainable_variables)
                optimizer.apply_gradients(
                    zip(actor_gradients,
                        agent.model.actor.trainable_variables))

            # Update agent
            manager.set_agent(agent.get_weights())
            agent = manager.get_agent()

            if e % policy_delay == 0:
                # Polyak averaging
                new_weights = list(rho * np.array(target_agent.get_weights()) +
                                   (1. - rho) * np.array(agent.get_weights()))
                target_agent.set_weights(new_weights)

        reward = manager.test(test_steps, evaluation_measure="reward")
        manager.update_aggregator(loss=total_loss, reward=reward)
        print(
            f"epoch ::: {e}  loss ::: {total_loss}   avg reward ::: {np.mean(reward)}"
        )

        if e % saving_after == 0:
            manager.save_model(saving_path, e)

        # needed time and remaining time estimation
        current_t = time.time()
        time_needed = (current_t - last_t) / 60.
        time_remaining = (current_t - timer) / 60. / (e + 1) * (epochs -
                                                                (e + 1))
        print(
            'Finished epoch %d of %d. Needed %1.f min for this epoch. Estimated time remaining: %.1f min'
            % (e + 1, epochs, time_needed, time_remaining))
        last_t = current_t

    manager.load_model(saving_path)
    print("done")
    print("testing optimized agent")
    manager.test(test_steps, test_episodes=10, render=True)

    ray.shutdown()
Ejemplo n.º 4
0
    for e in range(epochs):
        sample_dict = manager.sample(sample_size, from_buffer=False)
        print(f"collected data for: {sample_dict.keys()}")

        # Shift value estimate by one to the left to get the value estimate of next state
        state_value = tf.squeeze(sample_dict['value_estimate'])
        state_value_new = tf.roll(state_value, -1, axis=0)
        not_done = tf.cast(sample_dict['not_done'], tf.bool)
        state_value_new = tf.where(not_done, state_value_new, 0)

        # Calculate advantate estimate q(s,a)-b(s)=r+v(s')-v(s)
        advantage_estimate = -state_value + sample_dict[
            'reward'] + gamma * state_value_new
        sample_dict['advantage_estimate'] = advantage_estimate

        data_dict = dict_to_dict_of_datasets(sample_dict,
                                             batch_size=optim_batch_size)
        total_loss = 0

        for state, action, reward, state_new, not_done, mc, advantage_estimate, value_estimate, old_action_prob in \
            zip(data_dict['state'],
                data_dict['action'],
                data_dict['reward'],
                data_dict['state_new'],
                data_dict['not_done'],
                data_dict['monte_carlo'],
                data_dict['advantage_estimate'],
                data_dict['value_estimate'],
                data_dict['log_prob']):

            old_action_prob = tf.cast(old_action_prob, tf.float32)
            mc = tf.cast(mc, tf.float32)
Ejemplo n.º 5
0
    manager.test(MAX_TEST_STEPS, 5, evaluation_measure='time_and_reward', do_print=True, render=True)

    # get the initial agent
    agent = manager.get_agent()

    print('# =============== START TRAINING ================ #')
    for e in range(1, EPOCHS+1):
        print(f'# ============== EPOCH {e}/{EPOCHS} ============== #')
        print('# ============= collecting samples ============== #')
        # collect experience and save it to ERP buffer
        data = manager.get_data(do_print=False)
        manager.store_in_buffer(data)

        # get some samples from the ERP buffer and create a dataset
        sample_dict = manager.sample(sample_size=SAMPLE_SIZE)
        data_dict = dict_to_dict_of_datasets(sample_dict, batch_size=BATCH_SIZE)
        dataset = tf.data.Dataset.zip((data_dict['state'], data_dict['action'], data_dict['reward'], data_dict['state_new'], data_dict['not_done']))

        print('# ================= optimizing ================== #')
        losses = []
        for s, a, r, ns, nd in dataset:

            # ensure that the datasets have at least 10 elements
            # otherwise we run into problems with the MSE loss
            if len(s) >= 10:
                loss = train_q_network(agent, s, a, r, ns, nd, optimizer)
                losses.append(loss)

        print(f'average loss: {np.mean(losses)}')

        # update the weights of the manager