Ejemplo n.º 1
0
def fiscTrain(csv_file, model_filename):
    print "Fischer training"
    print csv_file
    print model_filename
    global model
    model = recognition.get_model_from_csv(filename=csv_file,
                                           out_model_filename=model_filename)
    print model
Ejemplo n.º 2
0
def identifyAndTrain(image_path, csv_file, model_filename):
    print "With Training"
    print image_path
    print csv_file
    print model_filename
    global model
    model = recognition.get_model_from_csv(filename=csv_file,
                                           out_model_filename=model_filename)
    print model
    image = open(image_path, 'rb')  #open binary file in read mode
    image_read = image.read()
    image_data = base64.encodestring(image_read)
    #print image_data
    prediction = get_prediction(image_data)
    return prediction
Ejemplo n.º 3
0
                        "--port",
                        action="store",
                        dest="port",
                        default=5000,
                        help="Sets the port for this server.",
                        required=False)
    parser.add_argument('model_filename',
                        nargs='?',
                        help="Filename of the model to use or store")
    # Print Usage:
    print "=== Usage ==="
    parser.print_help()
    # Parse the Arguments:
    args = parser.parse_args()
    # Uh, this is ugly...
    global model
    # If a DataSet is given, we want to work with it:
    if args.dataset:
        # Learn the new model with the dataset given:
        model = recognition.get_model_from_csv(
            filename=args.dataset, out_model_filename=args.model_filename)
    else:
        model = recognition.load_model_file(args.model_filename)
    # Finally start the server:
    print "=== Server Log (also in %s) ===" % (LOG_FILENAME)
    app.run(host=args.host,
            port=args.port,
            debug=True,
            use_reloader=False,
            threaded=False)
Ejemplo n.º 4
0
    print "=== Description ==="
    print long_description
    print "=== Usage ==="
    print "Usage:", usage
    print "=== Server Log (also in %s) ===" % (LOG_FILENAME)
    # Parse the command line:    
    from optparse import OptionParser

    parser = OptionParser(usage=usage)
    parser.add_option("-t", "--train", action="store", type="string", dest="dataset", default=None, 
        help="Calculates a new model from a given CSV file. CSV format: <person>;</path/to/image/folder>.")
     # Split between options and arguments
    (options, args) = parser.parse_args()
    # Check if a model filename was passed:
    if len(args) == 0:
        print "Expected a facerec model to use for recognition!"
        sys.exit()    
    # The filename of the model:
    model_filename = args[0]
    # Uh, this is ugly...
    global model
    # If a DataSet is given, we want to work with it:
    if options.dataset:
        # Learn the new model with the dataset given:
        model = recognition.get_model_from_csv(filename=options.dataset,out_model_filename=model_filename)
    else:
        model = recognition.load_model_file(model_filename)
    # Finally start the server:        
    app.run(host="0.0.0.0", port=int("5000"), debug=True, use_reloader=False, threaded=False)
Ejemplo n.º 5
0
    )
    parser.add_argument(
        "-a",
        "--address",
        action="store",
        dest="host",
        default="0.0.0.0",
        help="Sets the endpoint for this server.",
        required=False,
    )
    parser.add_argument(
        "-p", "--port", action="store", dest="port", default=5000, help="Sets the port for this server.", required=False
    )
    parser.add_argument("model_filename", nargs="?", help="Filename of the model to use or store")
    # Print Usage:
    print "=== Usage ==="
    parser.print_help()
    # Parse the Arguments:
    args = parser.parse_args()
    # Uh, this is ugly...
    global model
    # If a DataSet is given, we want to work with it:
    if args.dataset:
        # Learn the new model with the dataset given:
        model = recognition.get_model_from_csv(filename=args.dataset, out_model_filename=args.model_filename)
    else:
        model = recognition.load_model_file(args.model_filename)
    # Finally start the server:
    print "=== Server Log (also in %s) ===" % (LOG_FILENAME)
    app.run(host=args.host, port=args.port, debug=True, use_reloader=False, threaded=False)