Ejemplo n.º 1
0
def sixClasses(numImgs):
    # Classes of objects which are to be used
    classlist = [
        "005.volvic",
        "006.barillabox",
        "004.fantabottle",
        "007.kinderschokoladetafel",
        "003.pringles",
        "002.cokecan",
    ]
    numCluster = 5000
    et = 7.5
    pt = 5.0
    etClassify = 7.5
    ptClassify = 5.0
    fDist = 0.0015
    nu = 0.5
    gamma = 1.0
    confThr = 0.00

    rec.logger.info("Training gleissenthalls six classes")
    rec.logger.info("SIFT parameters: edge threshold=%f, peak threshold=%f", et, pt)
    rec.logger.info("Number of clusters: %d", numCluster)
    rec.logger.info("SVM parameter: nu=%f, sigma(RBF-Kernel)=%f", nu, gamma)

    # Load images from folder structure
    trainImgs = im.loadImages("img/train/6classes", classlist, numImgs)
    testImgs = im.loadImages("img/test_big_images", classlist)
    trainLabel = im.loadLabels("img/train/6classes", classlist, numImgs)
    testLabels = im.loadLabels("img/test_big_images", classlist)

    # Train classifier
    learner = cl.Learner()
    learner.trainPerClass(trainImgs, trainLabel, numCluster, fDist, pt, et)

    c = cl.Classifier(learner)
    testDesc, _ = im.extractFeaturesPerClass(testImgs, testLabels, ptClassify, etClassify)
    tmpHistograms = cl._buildHistograms(learner.codebook, testDesc)
    orngHistograms = cl._convertToOrangeDataSet(tmpHistograms, learner.domain, testLabels)
    c.classificationAccuracy(orngHistograms, None, confThr, ptClassify, etClassify, nu, gamma, False)
    c.saveToDB()

    rec.logger.info("Classes: %s", learner.strClasses)
    rec.logger.info("\n" + str(c.confusion))
    rec.logger.info("\nAccuracy: %f CV: %f", c.clAccuracy, c.cvAccuracy)
Ejemplo n.º 2
0
def calltech(numTrain, numTest, masterCBs, pNorm, numCluster):
    # Classes of objects which are to be used
    classlist = None
    # numCluster = 10000
    et = 5.0
    pt = 0.0
    etClassify = 10.0
    ptClassify = 2.5
    fDist = 0.0001
    nu = 0.5
    gamma = 2.0
    confThr = 0.00

    rec.logger.info("Training calltech")
    rec.logger.info("SIFT parameters: edge threshold=%f, peak threshold=%f", et, pt)
    rec.logger.info("Number of clusters: %d", numCluster)
    rec.logger.info("SVM parameter: nu=%f, sigma(RBF-Kernel)=%f", nu, gamma)

    # Load images from folder structure
    trainImgs = im.loadImages("256_ObjectCategories", classlist, numTrain)
    testImgs = im.loadImages("256_ObjectCategories", classlist, numTest, rev=True)
    trainLabel = im.loadLabels("256_ObjectCategories", classlist, numTrain)
    testLabels = im.loadLabels("256_ObjectCategories", classlist, numTest)

    # Train classifier
    learner = cl.Learner()
    learner.trainPerClass(trainImgs, trainLabel, numCluster, fDist, pt, et, masterCBs, pNorm)

    c = cl.Classifier(learner)
    testDesc, _ = im.extractFeaturesPerClass(testImgs, testLabels, ptClassify, etClassify)
    tmpHistograms = cl._buildHistograms(learner.codebook, testDesc)
    orngHistograms = cl._convertToOrangeDataSet(tmpHistograms, learner.domain, testLabels)
    c.classificationAccuracy(orngHistograms, None, confThr, ptClassify, etClassify, nu, gamma, False)
    c.saveToDB()

    rec.logger.info("Classes: %s", learner.strClasses)
    rec.logger.info("\n" + str(c.confusion))
    rec.logger.info("\nAccuracy: %f CV: %f", c.clAccuracy, c.cvAccuracy)
Ejemplo n.º 3
0
def googleImages(numTrainImgs):
    # Classes of objects which are to be used
    classlist = None
    numCluster = 5000
    et = 5.0
    pt = 7.5
    etClassify = 7.5
    ptClassify = 5.0
    fDist = 0.0009
    nu = 0.5
    gamma = 2.0
    confThr = 0.00

    rec.logger.info("Training %i googleSimilarImages", numTrainImgs)
    rec.logger.info("SIFT parameters: edge threshold=%f, peak threshold=%f", et, pt)
    rec.logger.info("Number of clusters: %d", numCluster)
    rec.logger.info("SVM parameter: nu=%f, sigma(RBF-Kernel)=%f", nu, gamma)

    # Load images from folder structure
    trainImgs = im.loadImages("img/train/googleSimilarImages", classlist, numTrainImgs)
    testImgs = im.loadImages("img/test_big_images", classlist, 30)
    trainLabel = im.loadLabels("img/train/googleSimilarImages", classlist, numTrainImgs)
    testLabels = im.loadLabels("img/test_big_images", classlist, 30)

    # Train classifier
    learner = cl.Learner()
    learner.trainPerClass(trainImgs, trainLabel, numCluster, fDist, pt, et)

    c = cl.Classifier(learner)
    testDesc, _ = im.extractFeaturesPerClass(testImgs, testLabels, ptClassify, etClassify)
    tmpHistograms = cl._buildHistograms(learner.codebook, testDesc)
    orngHistograms = cl._convertToOrangeDataSet(tmpHistograms, learner.domain, testLabels)
    c.classificationAccuracy(orngHistograms, None, confThr, ptClassify, etClassify, nu, gamma, False)
    c.saveToDB()

    rec.logger.info("Classes: %s", learner.strClasses)
    rec.logger.info("\n" + str(c.confusion))
    rec.logger.info("\nAccuracy: %f CV: %f", c.clAccuracy, c.cvAccuracy)
Ejemplo n.º 4
0
def clusteringParamSearch(trainPath, trainClasses, trainCount, clusterRange, ptRange, etRange, fisherRange):

    trainImgs = im.loadImages(trainPath, trainClasses, trainCount)
    trainLabels = im.loadLabels(trainPath, trainClasses, trainCount)

    for peakVal in ptRange:
        for edgeVal in etRange:

            # Extract SIFT features
            rec.logger.info("SIFT Parameter. Peak: %f Edge: %f", peakVal, edgeVal)
            trainDesc, numTrainingDesc = im.extractFeatures(trainImgs, peakVal, edgeVal)

            for clusterParam in clusterRange:
                for fDist in fisherRange:

                    learner = cl.Learner()
                    learner.peakThreshold = peakVal
                    learner.edgeThreshold = edgeVal
                    learner.numTrainingDesc = numTrainingDesc

                    rec.logger.info("Cluster parameter. Cluster: %i MinDist %f", clusterParam, fDist)
                    learner.averageSilhouetteCoefficient(trainLabels, trainDesc, clusterParam, fDist)
                    learner.saveToDB()
Ejemplo n.º 5
0
def parameterGridSearch(
    trainPath,
    trainClasses,
    trainCount,
    testPath,
    testCount,
    clusterRange,
    ptRange,
    etRange,
    fisherRange,
    nuRange,
    gammaRange,
    ctRange,
    ptTestRg=None,
    etTestRg=None,
    numMastCB=1,
):

    trainLabels = im.loadLabels(trainPath, trainClasses, trainCount)

    trClasses = cl._getAllClasses(trainLabels)
    testLabels = im.loadLabels(testPath, trClasses, testCount)

    if ptTestRg is None and etTestRg is None:
        ptTestRg = [-1]
        etTestRg = [-1]

    for peakVal in ptRange:
        for edgeVal in etRange:

            # Extract SIFT features
            rec.logger.info("SIFT Training Parameter. Peak: %f Edge: %f", peakVal, edgeVal)
            trainImgs = im.loadImages(trainPath, trainClasses, trainCount)
            trainDescPerClass, numTrainDesc = im.extractFeaturesPerClass(trainImgs, trainLabels, peakVal, edgeVal)

            for clusterParam in clusterRange:
                for fDist in fisherRange:
                    learner = cl.Learner()
                    learner.peakThreshold = peakVal
                    learner.edgeThreshold = edgeVal
                    learner.numTrainingDesc = numTrainDesc

                    rec.logger.info("Cluster parameter. Cluster: %i MinDist %f", clusterParam, fDist)
                    try:
                        learner.trainPerClass(trainDescPerClass, trainLabels, clusterParam, fDist, masterCBs=numMastCB)
                    except ValueError:
                        rec.logger.warning("Skipped this paramter set because there are not enough features.")
                        break

                    for p in ptTestRg:
                        for e in etTestRg:
                            if p == -1 and e == -1:
                                p = peakVal
                                e = edgeVal

                            rec.logger.info("SIFT Test Parameter. Peak: %f Edge: %f", p, e)
                            testImgs = im.loadImages(testPath, trClasses, testCount, False)
                            testDesc, numTestDesc = im.extractFeaturesPerClass(testImgs, testLabels, p, e)
                            tmpHistograms = cl._buildHistograms(learner.codebook, testDesc)
                            orngHistograms = cl._convertToOrangeDataSet(tmpHistograms, learner.domain, testLabels)

                            for n in nuRange:
                                for g in gammaRange:
                                    for ct in ctRange:
                                        c = cl.Classifier(learner)
                                        c.numTestDesc = numTestDesc
                                        c.peakThreshold = p
                                        c.edgeThreshold = e
                                        rec.logger.info(
                                            "SVM parameter. Nu: %f gamma %f," "Confidence Threshold: %f", n, g, ct
                                        )
                                        _, _ = c.classificationAccuracy(orngHistograms, None, ct, p, e, n, g)

                                        c.saveToDB()
                                        rec.logger.info(
                                            "Ref count of classifier: %i, learner: %i",
                                            sys.getrefcount(c),
                                            sys.getrefcount(learner),
                                        )