def test_add_new_element(self):

        om = ag.ObjectsMemory()

        t1 = torch.arange(10, 20)[None, ...]

        om.add_new_element(t1, 1)

        npt.assert_equal(utils.t2a(om.M), np.arange(10, 20).reshape((1, 10)))
        npt.assert_equal(om.seq_ids, np.arange(1, 2))

        g_set = set([1])

        self.assertEqual(set(om.G.nodes), g_set)

        om = ag.ObjectsMemory()

        t1 = torch.arange(10, 20)[None, ...]
        t2 = torch.arange(20, 30)[None, ...]
        t3 = torch.arange(30, 40)[None, ...]

        om.add_new_element(t1, 1)
        om.add_new_element(t2, 2)
        om.add_new_element(t3, 3)

        npt.assert_equal(utils.t2a(om.M), np.arange(10, 40).reshape((3, 10)))
        npt.assert_equal(om.seq_ids, np.arange(1, 4))

        g_set = set([1, 2, 3])

        self.assertEqual(set(om.G.nodes), g_set)
def get_data(session_ds, inc_eval_ds, ms_band, db_eps):
    session_data = list(session_ds)
    inc_eval_data = list(inc_eval_ds)
    session_emb = np.squeeze([utils.t2a(d[0][0]) for d in session_data])
    session_lab = np.squeeze([d[1] for d in session_data])

    inc_eval_emb = np.squeeze([utils.t2a(d[0][0]) for d in inc_eval_data])
    inc_eval_lab = np.squeeze([d[1] for d in inc_eval_data])

    X = np.concatenate((session_emb, inc_eval_emb))
    y = np.concatenate((session_lab, inc_eval_lab))

    meanshifts = [cl.MeanShift(bandwidth=b).fit_predict(X) for b in ms_band]
    optics = cl.OPTICS(min_samples=1).fit_predict(X)
    dbscans = [cl.DBSCAN(eps=e, min_samples=1).fit_predict(X) for e in db_eps]

    res = np.array(meanshifts + dbscans + [optics])
    inc_pred = res[:, session_lab.size:]

    aris = [adjusted_rand_score(p, inc_eval_lab) for p in inc_pred]
    amis = [
        adjusted_mutual_info_score(p, inc_eval_lab, average_method='max')
        for p in inc_pred
    ]

    return np.array(aris), np.array(amis), inc_pred, inc_eval_lab
    def test_get_something(self):
        om = ag.ObjectsMemory()

        t1 = torch.arange(10, 20)
        t2 = torch.arange(20, 30)
        t3 = torch.arange(30, 40)

        om.add_new_element(t1, 1)
        om.add_new_element(t2, 2)
        om.add_new_element(t3, 3)

        npt.assert_equal(om.get_sid(0), 1)
        npt.assert_equal(utils.t2a(om.get_embed(0)), utils.t2a(t1))
Ejemplo n.º 4
0
    def test_globalmean(self):
        bogusdata = [torch.ones(5, 3), torch.zeros(6, 3)]

        gm = models.GlobalMean()

        fded = gm.forward(bogusdata)

        fded = np.array([utils.t2a(f.squeeze(dim=0)) for f in fded])

        npt.assert_equal(fded, np.array([np.ones(3), np.zeros(3)]))

        fded = gm.forward(bogusdata[:1])

        fded = utils.t2a(fded[0].squeeze(dim=0))

        npt.assert_equal(fded, np.ones(3))
Ejemplo n.º 5
0
    def test_recursivereduction(self):
        bogusdata = [torch.ones(50, 3), torch.zeros(60, 3)]

        rr = models.RecursiveReduction(3)

        fded = rr.forward(bogusdata)

        fded_a = np.concatenate([utils.t2a(f) for f in fded])

        self.assertEqual(fded_a.shape, (2, 3))
    def test_get_knn(self):
        om = ag.ObjectsMemory()

        t1 = torch.arange(10, 20).float()
        t2 = torch.arange(20, 30).float()
        t3 = torch.arange(40, 50).float()

        om.add_new_element(t1, 1)
        om.add_new_element(t2, 2)
        om.add_new_element(t3, 3)

        npt.assert_equal(utils.t2a(om.get_knn(t1, k=1)[1]), 0)
        npt.assert_equal(utils.t2a(om.get_knn(t1, k=2)[1]), np.array([[0, 1]]))

        t12 = torch.stack([t1, t2])

        npt.assert_equal(utils.t2a(om.get_knn(t12, k=1)[1]),
                         np.array([[0], [1]]))
        npt.assert_equal(utils.t2a(om.get_knn(t12, k=2)[1]),
                         np.array([[0, 1], [1, 0]]))
    def test_add_neighbors(self):
        om = ag.ObjectsMemory()

        t1 = torch.arange(10, 20)[None, ...]
        t2 = torch.arange(20, 30)[None, ...]
        t3 = torch.arange(30, 40)[None, ...]

        om.add_new_element(t1, 1)
        om.add_new_element(t2, 2)
        om.add_new_element(t3, 3)
        om.add_neighbors(3, [0])

        npt.assert_equal(utils.t2a(om.M), np.arange(10, 40).reshape((3, 10)))
        npt.assert_equal(om.seq_ids, np.arange(1, 4))

        g_set = set([1, 2, 3])

        self.assertEqual(set(om.G.nodes), g_set)

        e_set = set([(1, 3)])

        self.assertEqual(set([tuple(sorted(e)) for e in om.G.edges]), e_set)
def t_assert_equal(a, b):
    npt.assert_equal(utils.t2a(a), utils.t2a(b))