Ejemplo n.º 1
0
 def kernel_params_log_prob(param_0bar, param_1bar):
     param_0 = logit(param_0bar, nan_replace=self.params.kernel_params.prior[0].b)
     param_1 = logit(param_1bar, nan_replace=self.params.kernel_params.prior[1].b)
     new_prob = tf.reduce_sum(self.params.latents.prior(
                 all_states[self.state_indices['latents']], param_0bar, param_1bar))
     new_prob += self.params.kernel_params.prior[0].log_prob(param_0)
     new_prob += self.params.kernel_params.prior[1].log_prob(param_1)
     return tf.reduce_sum(new_prob)
Ejemplo n.º 2
0
 def normal_sampler_fn(seed):
     p1, p2 = all_states[self.state_indices['kernel_params']]
     m, K = self.kernel_selector()(logit(p1), logit(p2))
     m = tf.zeros((self.num_replicates, self.num_tfs, self.N_p),
                  dtype='float64')
     K = tf.stack([K for _ in range(3)], axis=0)
     jitter = tf.linalg.diag(1e-8 * tf.ones(self.N_p, dtype='float64'))
     z = tfd.MultivariateNormalTriL(
         loc=m,
         scale_tril=tf.linalg.cholesky(K + jitter)).sample(seed=seed)
     # tf.print(z)
     return z
Ejemplo n.º 3
0
    def results(self, burnin=0):
        Δ = σ2_f = k_fbar = None
        σ2_m = self.samples[self.state_indices['σ2_m']][burnin:]
        if self.options.preprocessing_variance:
            σ2_m = logit(σ2_m)
        else:
            σ2_f = self.samples[self.state_indices['σ2_f']][burnin:]

        nuts_index = 0
        kbar = self.samples[self.state_indices['kinetics']][nuts_index].numpy()[burnin:]
        fbar = self.samples[self.state_indices['latents']]
        if self.options.translation:
            nuts_index += 1
            k_fbar = self.samples[self.state_indices['kinetics']][nuts_index].numpy()[burnin:]
            if k_fbar.ndim < 3:
                k_fbar = np.expand_dims(k_fbar, 2)
        if not self.options.joint_latent:
            kernel_params = self.samples[self.state_indices['kernel_params']][burnin:]
        else:
            kernel_params = [fbar[1][burnin:], fbar[2][burnin:]]
            fbar = fbar[0][burnin:]
        wbar = tf.stack([logistic(1*tf.ones((self.num_genes, self.num_tfs), dtype='float64')) for _ in range(fbar.shape[0])], axis=0)
        w_0bar = tf.stack([0.5*tf.ones(self.num_genes, dtype='float64') for _ in range(fbar.shape[0])], axis=0)
        if self.options.weights:
            nuts_index += 1
            wbar =      self.samples[self.state_indices['kinetics']][nuts_index][burnin:]
            w_0bar =    self.samples[self.state_indices['kinetics']][nuts_index+1][burnin:]
        if self.options.delays:
            Δ =  self.samples[self.state_indices['Δ']][burnin:]
        return SampleResults(self.options, fbar, kbar, k_fbar, Δ, kernel_params, wbar, w_0bar, σ2_m, σ2_f)
Ejemplo n.º 4
0
 def kbar_log_prob_fn(*args): #kbar, k_fbar, wbar, w_0bar
     index = 0
     kbar = args[index]
     new_prob = 0
     k_m =logit(kbar)
     if self.options.kinetic_exponential:
         k_m = tf.exp(k_m)
     # tf.print(k_m)
     lik_args = {'kbar': kbar}
     new_prob += tf.reduce_sum(self.params.kinetics.prior[index].log_prob(k_m))
     # tf.print('kbar', new_prob)
     if options.translation:
         index += 1
         k_fbar = args[index]
         lik_args['k_fbar'] = k_fbar
         kfprob = tf.reduce_sum(self.params.kinetics.prior[index].log_prob(logit(k_fbar)))
         new_prob += kfprob
     if options.weights:
         index += 1
         wbar = args[index]
         w_0bar = args[index+1]
         new_prob += tf.reduce_sum(self.params.weights.prior[0].log_prob((wbar))) 
         new_prob += tf.reduce_sum(self.params.weights.prior[1].log_prob((w_0bar)))
         lik_args['wbar'] = wbar
         lik_args['w_0bar'] = w_0bar
     new_prob += tf.reduce_sum(self.likelihood.genes(
         all_states=all_states,
         state_indices=self.state_indices,
         **lik_args
     ))
     return tf.reduce_sum(new_prob)
Ejemplo n.º 5
0
    def calculate_protein(self, fbar, k_fbar, Δ):  # Calculate p_i vector
        τ = self.data.τ
        f_i = inverse_positivity(fbar)
        δ_i = tf.reshape(logit(k_fbar), (-1, 1))
        if self.options.delays:
            # Add delay
            Δ = tf.cast(Δ, 'int32')

            for r in range(self.num_replicates):
                f_ir = rotate(f_i[r], -Δ)
                mask = ~tf.sequence_mask(Δ, f_i.shape[2])
                f_ir = tf.where(mask, f_ir, 0)
                mask = np.zeros((self.num_replicates, 1, 1), dtype='float64')
                mask[r] = 1
                f_i = (1 - mask) * f_i + mask * f_ir

        # Approximate integral (trapezoid rule)
        resolution = τ[1] - τ[0]
        sum_term = tfm.multiply(tfm.exp(δ_i * τ), f_i)
        cumsum = 0.5 * resolution * tfm.cumsum(
            sum_term[:, :, :-1] + sum_term[:, :, 1:], axis=2)
        integrals = tf.concat([
            tf.zeros((self.num_replicates, self.num_tfs, 1), dtype='float64'),
            cumsum
        ],
                              axis=2)
        exp_δt = tfm.exp(-δ_i * τ)
        p_i = exp_δt * integrals
        return p_i
Ejemplo n.º 6
0
 def σ2_m_log_prob_fn(σ2_mstar):
     # tf.print('starr:', logit(σ2_mstar))
     new_prob = self.likelihood.genes(
         all_states=all_states, 
         state_indices=self.state_indices,
         σ2_m=σ2_mstar 
     ) + self.params.σ2_m.prior.log_prob(logit(σ2_mstar))
     # tf.print('prob', tf.reduce_sum(new_prob))
     return tf.reduce_sum(new_prob)                
Ejemplo n.º 7
0
    def predict_m(self, kbar, k_fbar, wbar, fbar, w_0bar, Δ):
        # Take relevant parameters out of log-space
        if self.options.kinetic_exponential:
            kin = (tf.reshape(tf.exp(logit(kbar[:, i])), (-1, 1))
                   for i in range(kbar.shape[1]))
        else:
            kin = (tf.reshape(logit(kbar[:, i]), (-1, 1))
                   for i in range(kbar.shape[1]))
        if self.options.initial_conditions:
            a_j, b_j, d_j, s_j = kin
        else:
            b_j, d_j, s_j = kin
        w = (wbar)
        w_0 = tf.reshape((w_0bar), (-1, 1))
        τ = self.data.τ
        N_p = self.data.τ.shape[0]

        p_i = inverse_positivity(fbar)
        if self.options.translation:
            p_i = self.calculate_protein(fbar, k_fbar, Δ)

        # Calculate m_pred
        resolution = τ[1] - τ[0]
        interactions = tf.matmul(w, tfm.log(p_i + 1e-100)) + w_0
        G = tfm.sigmoid(interactions)  # TF Activation Function (sigmoid)
        sum_term = G * tfm.exp(d_j * τ)
        integrals = tf.concat(
            [
                tf.zeros((self.num_replicates, self.num_genes, 1),
                         dtype='float64'),  # Trapezoid rule
                0.5 * resolution *
                tfm.cumsum(sum_term[:, :, :-1] + sum_term[:, :, 1:], axis=2)
            ],
            axis=2)
        exp_dt = tfm.exp(-d_j * τ)
        integrals = tfm.multiply(exp_dt, integrals)

        m_pred = b_j / d_j + s_j * integrals
        if self.options.initial_conditions:
            m_pred += tfm.multiply((a_j - b_j / d_j), exp_dt)
        return m_pred
Ejemplo n.º 8
0
    def _genes(self, fbar, kbar, k_fbar, wbar, w_0bar, σ2_m, Δ):
        m_pred = self.predict_m(kbar, k_fbar, wbar, fbar, w_0bar, Δ)
        sq_diff = tfm.square(self.data.m_obs - tf.transpose(
            tf.gather(tf.transpose(m_pred), self.data.common_indices)))

        variance = tf.reshape(σ2_m, (-1, 1))
        if self.preprocessing_variance:
            variance = logit(
                variance) + self.data.σ2_m_pre  # add PUMA variance
        log_lik = -0.5 * tfm.log(2 * PI * variance) - 0.5 * sq_diff / variance
        log_lik = tf.reduce_sum(log_lik)
        return log_lik
Ejemplo n.º 9
0
 def k_f(self):
     if self.k_fbar is None:
         return None
     return logit(self.k_fbar).numpy()
Ejemplo n.º 10
0
 def k(self):
     ret = logit(self.kbar).numpy()
     if self.options.kinetic_exponential:
         return np.exp(ret)
     return ret