class Block(object): def __init__(self, size): self.size = size self.path = set() self.zones = set() def build(self): self.root = Region((0,0), self.size) self.regions = self.root.split_to_size(1000) self.graph = RegionGraph(self.regions) self.zones = self.graph.assign_zones(3) self.build_structures() self.starter_zone = random.choice(list(self.zones)) def build_structures(self): for zone in self.zones.copy(): self.zones.remove(zone) self.zones.add(zone.define()) for zone in self.zones: zone.construct() structure_graph = RegionGraph(self.root.search_down(), self.root) for zone in self.zones: zone.determine_interior_edges(self.graph) zone.update_structures(structure_graph) for zone in self.zones: for edge in zone.connections: edge.owner.edges.add(edge) for zone in self.zones: zone.draw_path() for zone in self.zones: for structure in zone.structures: structure.draw()
def instances_fee(): try: from gcp import fee auth = Auth() auth.get_service(request) data = request.args.to_dict() ebs = list(eval(data['ebs'])) instance_type = data['instance_type'] os = data['os'] quantity = int(data['quantity']) total_compute = round( fee.instance_price[instance_type]['price'][ Region().get_region_name(auth.region)] * quantity, 2) total_ebs = 0 for each_ebs in ebs: total_ebs += round( fee.disk_price[each_ebs['type']][Region().get_region_name( auth.region)] * int(each_ebs['size']), 2) total = total_compute + total_ebs res = {'compute': total_compute, 'ebs': total_ebs, 'total': total} return jsonify(res) except errors.HttpError as e: msg = json.loads(e.content) return jsonify(msg=msg['error']['message']), msg['error']['code']
def build(self): self.root = Region((0,0), self.size) self.regions = self.root.split_to_size(1000) self.graph = RegionGraph(self.regions) self.zones = self.graph.assign_zones(3) self.build_structures() self.starter_zone = random.choice(list(self.zones))
def plot_graphs_for_year(year_str): ''' This function will create 7 plots for the input year which includes 1 box plot for that year and 6 hostograms for each region ''' #try: countries = pd.read_csv('../countries.csv', sep=',') income = pd.read_excel('../indicator gapminder gdp_per_capita_ppp.xlsx', index_col=0) income = income.transpose() list_region_objects = [] list_of_region_income_data = [] year = int(year_str) directory_name = create_new_directory(year_str) print print "------------------------------------------------------------------------------------------------------" print print "Analysis for the year ", year_str, " started ..." print regions_data = merge_by_year(year, income, countries) grouped_region_data = regions_data.groupby('Region') region_names = regions_data['Region'].unique() #below for loop will create Region type objects for each individual region for region_name in region_names: region_data = grouped_region_data.get_group(region_name) region_object = Region(region_name, region_data) # Instance creation of Region class list_region_objects.append(region_object) #creating list of lists having data of each region income for the Box Plot for i in range(len(list_region_objects)): list_of_region_income_data.append(list_region_objects[i].region_income) print "Plotting and saving histograms for each region ...In Progress..." for i in range(len(list_region_objects)): Region.plot_Hist_Graphs(list_region_objects[i], year_str, directory_name) print "Histograms for each region are plotted and saved successfully ...Completed !!!" print print "Plotting and saving Box Plot ...In Progress..." Region.plot_BoxPlots(region_names, list_of_region_income_data, year_str, directory_name) print "Box Plt is plotted and saved successfully ...Completed !!!" print
def create_regions(s, rids, rcolors, refpts, slevels, pids, task): if task: task.updateStatus('Making ID table') id_to_index = dict([(id, i) for i, id in enumerate(rids)]) if task: task.updateStatus('Collecting child region IDs') id_to_child_ids = {} n = len(rids) for i in range(n): pid = pids[i] if pid > 0: if pid in id_to_child_ids: id_to_child_ids[pid].append(rids[i]) else: id_to_child_ids[pid] = [rids[i]] if task: task.updateStatus('Ordering IDs') from regions import Region ids = depth_order(rids, id_to_child_ids, set()) rlist = [] for c, rid in enumerate(ids): if rid in id_to_child_ids: children = [s.id_to_region[cid] for cid in id_to_child_ids[rid]] else: children = [] i = id_to_index[rid] r = Region(s, rid, refpts[i], children) # TODO: Get wrappy error setting surface piece color to numpy array. r.color = tuple(rcolors[i]) if not slevels is None: r.smoothing_level = slevels[i] rlist.append(r) if task and c % 1000 == 0: task.updateStatus('Created %d of %d regions' % (c, n)) if not slevels is None: s.smoothing_level = max(slevels) return rlist
def init_sections_state(self): net_manager.init_devices() for section in self.vbox.get_children(): if section.show_or_hide(): section.section_show() section.init_state() else: section.section_hide() slider._append_page(Region(), "region") from setting_page_ui import SettingUI self.setting_page_ui = SettingUI(None, None) slider._append_page(self.setting_page_ui, "setting")
def copy_regions(regions, bin_size, seg): from regions import Region rlist = [] for r in regions: if r.rid in seg.id_to_region: rc = seg.id_to_region[r.rid] else: cc = copy_regions(r.children(), bin_size, seg) max_point = tuple([b * i for b, i in zip(bin_size, r.max_point)]) rc = Region(seg, r.rid, max_point, cc) rlist.append(rc) return rlist
def make_some_data(self): img_path="data_sim/boulder.png" region_coordinates={'latmin':0,'latmax':0,'lonmin':0,'lonmax':0} Boulder=Region('Boulder',img_path,region_coordinates) Boulder.initPointTargets() Boulder.generateLayers() total_targets=np.zeros((100,100,100)) for i, (gt_layer,sb_layer,pb_layer) in enumerate(zip(Boulder.ground_truth_layers,Boulder.shake_base_layers,Boulder.pixel_bleed_layers)): total_targets=total_targets+gt_layer+sb_layer+pb_layer total=total_targets+Boulder.noise_layer+Boulder.structured_noise_layer+Boulder.shotgun_noise_layer return total
def initialise_regions(self) -> None: """Create all the region data classes""" f = open("data/country_names.csv") data = f.readlines() for line in data[1:]: name, continent = DataSet.parse_csv_line(line) region = Region( name=name, continent=continent ) self.regions[name] = region f.close() # To ensure consistency between different data sets, # some names will be changed uk = self.regions["United Kingdom of Great Britain & Northern Ireland"] del self.regions["United Kingdom of Great Britain & Northern Ireland"] self.regions["United Kingdom"] = uk us = self.regions["United States of America"] del self.regions["United States of America"] self.regions["United States"] = us