Ejemplo n.º 1
0
def pushout_from_partial_mapping(b, c, b_c, b_typings, c_typings):
    """typings are dict {id_of_typing_graph:mapping}"""
    # a = b.subgraph(b_c.keys())
    a = nx.DiGraph()
    a.add_nodes_from(b_c.keys())
    a_b = id_of(a)
    a_c = b_c
    (d, b_d, c_d) = pushout(a, b, c, a_b, a_c)
    d_typings = typing_of_pushout(b, c, d, b_d, c_d, b_typings, c_typings)
    return (d, d_typings)
Ejemplo n.º 2
0
def pushout_from_partial_mapping(b, c, b_c, b_typings, c_typings):
    """typings are dict {id_of_typing_graph:mapping}"""
    # a = b.subgraph(b_c.keys())
    a = nx.DiGraph()
    a.add_nodes_from(b_c.keys())
    a_b = id_of(a)
    a_c = b_c
    (d, b_d, c_d) = pushout(a, b, c, a_b, a_c)
    d_typings = typing_of_pushout(b, c, d, b_d, c_d, b_typings, c_typings)
    return (d, d_typings)
Ejemplo n.º 3
0
def pushout_from_relation(g1, g2, relation, inplace=False):
    """Find the pushout from a relation."""

    left_dict = left_relation_dict(relation)
    right_dict = right_relation_dict(relation)

    if inplace is True:
        g12 = g1
    else:
        g12 = copy.deepcopy(g1)

    g1_g12 = id_of(g12.nodes())
    g2_g12 = dict()

    for node in g1.nodes():
        if node in left_dict.keys():
            for g2_node in left_dict[node]:
                g2_g12[g2_node] = node

    for node in g2.nodes():
        if node not in right_dict.keys():
            node_id = node
            if node_id in g12.nodes():
                node_id = unique_node_id(g12, node)
            add_node(g12, node_id, g2.node[node])
            g2_g12[node] = node_id
        elif len(right_dict[node]) == 1:
            node_attrs_diff = dict_sub(
                g2.node[node],
                g1.node[list(right_dict[node])[0]])
            add_node_attrs(
                g12, list(right_dict[node])[0], node_attrs_diff)
        elif len(right_dict[node]) > 1:
            new_name = merge_nodes(g12, right_dict[node])
            for g1_node in right_dict[node]:
                g1_g12[g1_node] = new_name
            g2_g12[node] = new_name
            node_attrs_diff = dict_sub(
                g2.node[node],
                g12.node[new_name])
            add_node_attrs(g12, new_name, node_attrs_diff)

    for u, v in g2.edges():
        if (g2_g12[u], g2_g12[v]) not in g12.edges():
            add_edge(g12, g2_g12[u], g2_g12[v], get_edge(g2, u, v))
        else:
            edge_attrs_diff = dict_sub(
                g2.adj[u][v],
                g12.adj[g2_g12[u]][g2_g12[v]])
            add_edge_attrs(g12, g2_g12[u], g2_g12[v], edge_attrs_diff)
    return (g12, g1_g12, g2_g12)
Ejemplo n.º 4
0
def pushout_from_relation(g1, g2, relation, inplace=False):
    """Find the pushout from a relation."""

    left_dict = left_relation_dict(relation)
    right_dict = right_relation_dict(relation)

    if inplace is True:
        g12 = g1
    else:
        g12 = copy.deepcopy(g1)

    g1_g12 = id_of(g12.nodes())
    g2_g12 = dict()

    for node in g1.nodes():
        if node in left_dict.keys():
            for g2_node in left_dict[node]:
                g2_g12[g2_node] = node

    for node in g2.nodes():
        if node not in right_dict.keys():
            node_id = node
            if node_id in g12.nodes():
                node_id = g12.generate_new_node_id(g12, node)
            g12.add_node(node_id, g2.get_node(node))
            g2_g12[node] = node_id
        elif len(right_dict[node]) == 1:
            node_attrs_diff = dict_sub(g2.get_node(node),
                                       g1.get_node(list(right_dict[node])[0]))
            g12.add_node_attrs(list(right_dict[node])[0], node_attrs_diff)
        elif len(right_dict[node]) > 1:
            new_name = g12.merge_nodes(right_dict[node])
            for g1_node in right_dict[node]:
                g1_g12[g1_node] = new_name
            g2_g12[node] = new_name
            node_attrs_diff = dict_sub(g2.get_node(node),
                                       g12.get_node(new_name))
            g12.add_node_attrs(new_name, node_attrs_diff)

    for u, v in g2.edges():
        if (g2_g12[u], g2_g12[v]) not in g12.edges():
            g12.add_edge(g2_g12[u], g2_g12[v], g2.get_edge(u, v))
        else:
            edge_attrs_diff = dict_sub(g2.get_edge(u, v),
                                       g12.get_edge(g2_g12[u], g2_g12[v]))
            g12.add_edge_attrs(g2_g12[u], g2_g12[v], edge_attrs_diff)
    return (g12, g1_g12, g2_g12)
Ejemplo n.º 5
0
def pushout_from_relation(g1, g2, relation, inplace=False):
    """Find the pushout from a relation."""

    left_dict = left_relation_dict(relation)
    right_dict = right_relation_dict(relation)

    if inplace is True:
        g12 = g1
    else:
        g12 = copy.deepcopy(g1)

    g1_g12 = id_of(g12.nodes())
    g2_g12 = dict()

    for node in g1.nodes():
        if node in left_dict.keys():
            for g2_node in left_dict[node]:
                g2_g12[g2_node] = node

    for node in g2.nodes():
        if node not in right_dict.keys():
            add_node(g12, node, g2.node[node])
            g2_g12[node] = node
        elif len(right_dict[node]) == 1:
            node_attrs_diff = dict_sub(g2.node[node],
                                       g1.node[list(right_dict[node])[0]])
            add_node_attrs(g12, list(right_dict[node])[0], node_attrs_diff)
        elif len(right_dict[node]) > 1:
            new_name = merge_nodes(g12, right_dict[node])
            for g1_node in right_dict[node]:
                g1_g12[g1_node] = new_name
            g2_g12[node] = new_name
            node_attrs_diff = dict_sub(g2.node[node], g12.node[new_name])
            add_node_attrs(g12, new_name, node_attrs_diff)

    for u, v in g2.edges():
        if (g2_g12[u], g2_g12[v]) not in g12.edges():
            add_edge(g12, g2_g12[u], g2_g12[v], get_edge(g2, u, v))
        else:
            edge_attrs_diff = dict_sub(g2.edge[u][v],
                                       g12.edge[g2_g12[u]][g2_g12[v]])
            add_edge_attrs(g12, g2_g12[u], g2_g12[v], edge_attrs_diff)
    return (g12, g1_g12, g2_g12)
Ejemplo n.º 6
0
def pullback_complement(a, b, d, a_b, b_d, inplace=False):
    """Find the final pullback complement from a->b->d.

    Makes changes to d inplace.
    """
    check_homomorphism(a, b, a_b, total=True)
    check_homomorphism(b, d, b_d, total=True)

    if not is_monic(b_d):
        raise InvalidHomomorphism("Second homomorphism is not monic, "
                                  "cannot find final pullback complement!")

    if inplace is True:
        c = d
    else:
        c = NXGraph()
        c.add_nodes_from(d.nodes(data=True))
        c.add_edges_from(d.edges(data=True))

    a_c = dict()
    c_d = id_of(c.nodes())

    # Remove/clone nodes
    for b_node in b.nodes():
        a_keys = keys_by_value(a_b, b_node)
        # Remove nodes
        if len(a_keys) == 0:
            c.remove_node(b_d[b_node])
            del c_d[b_d[b_node]]
        # Keep nodes
        elif len(a_keys) == 1:
            a_c[a_keys[0]] = b_d[b_node]
        # Clone nodes
        else:
            i = 1
            for k in a_keys:
                if i == 1:
                    a_c[k] = b_d[b_node]
                    c_d[b_d[b_node]] = b_d[b_node]
                else:
                    new_name = c.clone_node(b_d[b_node])
                    a_c[k] = new_name
                    c_d[new_name] = b_d[b_node]
                i += 1

    # Remove edges
    for (b_n1, b_n2) in b.edges():
        a_keys_1 = keys_by_value(a_b, b_n1)
        a_keys_2 = keys_by_value(a_b, b_n2)
        if len(a_keys_1) > 0 and len(a_keys_2) > 0:
            for k1 in a_keys_1:
                for k2 in a_keys_2:
                    if (k1, k2) not in a.edges() and\
                       (a_c[k1], a_c[k2]) in c.edges():
                        c.remove_edge(a_c[k1], a_c[k2])

    # Remove node attrs
    for a_node in a.nodes():
        attrs_to_remove = dict_sub(b.get_node(a_b[a_node]), a.get_node(a_node))
        c.remove_node_attrs(a_c[a_node], attrs_to_remove)
        # removed_node_attrs[a_c[a_node]] = attrs_to_remove

    # Remove edge attrs
    for (n1, n2) in a.edges():
        attrs_to_remove = dict_sub(b.get_edge(a_b[n1], a_b[n2]),
                                   a.get_edge(n1, n2))
        c.remove_edge_attrs(a_c[n1], a_c[n2], attrs_to_remove)
        # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove

    return (c, a_c, c_d)
Ejemplo n.º 7
0
def pushout(a, b, c, a_b, a_c, inplace=False):
    """Find the pushour of the span b <- a -> c."""
    def get_classes_to_merge():
        pass

    check_homomorphism(a, b, a_b)
    check_homomorphism(a, c, a_c)

    if inplace is True:
        d = b
    else:
        d = NXGraph()
        d.add_nodes_from(b.nodes(data=True))
        d.add_edges_from(b.edges(data=True))

    b_d = id_of(b.nodes())
    c_d = dict()

    # Add/merge nodes
    merged_nodes = dict()
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add nodes
        if len(a_keys) == 0:
            if c_n not in d.nodes():
                new_name = c_n
            else:
                new_name = d.generate_new_node_id(c_n)
            d.add_node(new_name, c.get_node(c_n))
            c_d[c_n] = new_name
        # Keep nodes
        elif len(a_keys) == 1:
            c_d[a_c[a_keys[0]]] = b_d[a_b[a_keys[0]]]
        # Merge nodes
        else:
            nodes_to_merge = set()
            # find the nodes that need to be merged
            for k in a_keys:
                nodes_to_merge.add(a_b[k])

            # find if exists already some merged node to
            # which the new node should be merged
            groups_to_remove = set()
            new_groups = set()
            merge_done = False
            for k in merged_nodes.keys():
                if nodes_to_merge.issubset(merged_nodes[k]):
                    merge_done = True
                else:
                    intersect_with_group = nodes_to_merge.intersection(
                        merged_nodes[k])
                    if len(intersect_with_group) > 0:
                        new_nodes_to_merge =\
                            nodes_to_merge.difference(merged_nodes[k])
                        if len(new_nodes_to_merge) > 0:
                            new_nodes_to_merge.add(k)
                            new_name = d.merge_nodes(new_nodes_to_merge)
                            merged_nodes[new_name] = merged_nodes[k].union(
                                nodes_to_merge)
                            groups_to_remove.add(k)
                            new_groups.add(new_name)

            if len(groups_to_remove) > 0:
                new_name = d.merge_nodes(new_groups)
                merged_nodes[new_name] = set()
                for g in new_groups:
                    merged_nodes[new_name] = merged_nodes[new_name].union(
                        merged_nodes[g])
                for group in groups_to_remove:
                    del merged_nodes[group]
            elif not merge_done:
                if len(nodes_to_merge) > 1:
                    new_name = d.merge_nodes(nodes_to_merge)
                    merged_nodes[new_name] = nodes_to_merge
                else:
                    new_name = list(nodes_to_merge)[0]

            c_d[c_n] = new_name

            for node in nodes_to_merge:
                b_d[node] = new_name

            for k in c_d.keys():
                for vv in keys_by_value(a_c, k):
                    if b_d[a_b[vv]] == new_name:
                        c_d[k] = new_name

    # Add edges
    for (n1, n2) in c.edges():
        if (c_d[n1], c_d[n2]) not in d.edges():
            d.add_edge(c_d[n1], c_d[n2], c.get_edge(n1, n2))

    # Add node attrs
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add attributes to the nodes which stayed invariant
        if len(a_keys) == 1:
            attrs_to_add = dict_sub(c.get_node(c_n), a.get_node(a_keys[0]))
            d.add_node_attrs(c_d[c_n], attrs_to_add)
        # Add attributes to the nodes which were merged
        elif len(a_keys) > 1:
            merged_attrs = {}
            for k in a_keys:
                merged_attrs = merge_attributes(merged_attrs, a.get_node(k))
            attrs_to_add = dict_sub(c.get_node(c_n), merged_attrs)
            d.add_node_attrs(c_d[c_n], attrs_to_add)

    # Add edge attrs
    for (n1, n2) in c.edges():
        d_n1 = c_d[n1]
        d_n2 = c_d[n2]
        attrs_to_add = dict_sub(c.get_edge(n1, n2), d.get_edge(d_n1, d_n2))
        d.add_edge_attrs(c_d[n1], c_d[n2], attrs_to_add)
    return (d, b_d, c_d)
Ejemplo n.º 8
0
def pullback_complement(a, b, d, a_b, b_d, inplace=False):
    """Find the final pullback complement from a->b->d.

    Makes changes to d inplace.
    """

    check_homomorphism(a, b, a_b, total=True)
    check_homomorphism(b, d, b_d, total=True)

    if not is_monic(b_d):
        raise InvalidHomomorphism(
            "Second homomorphism is not monic, "
            "cannot find final pullback complement!"
        )

    if inplace is True:
        c = d
    else:
        c = copy.deepcopy(d)

    a_c = dict()
    c_d = id_of(c.nodes())

    # Remove/clone nodes
    for b_node in b.nodes():
        a_keys = keys_by_value(a_b, b_node)
        # Remove nodes
        if len(a_keys) == 0:
            remove_node(c, b_d[b_node])
            del c_d[b_d[b_node]]
        # Keep nodes
        elif len(a_keys) == 1:
            a_c[a_keys[0]] = b_d[b_node]
        # Clone nodes
        else:
            i = 1
            for k in a_keys:
                if i == 1:
                    a_c[k] = b_d[b_node]
                    c_d[b_d[b_node]] = b_d[b_node]
                else:
                    new_name = clone_node(c, b_d[b_node])
                    a_c[k] = new_name
                    c_d[new_name] = b_d[b_node]
                i += 1

    # Remove edges
    for (b_n1, b_n2) in b.edges():
        a_keys_1 = keys_by_value(a_b, b_n1)
        a_keys_2 = keys_by_value(a_b, b_n2)
        if len(a_keys_1) > 0 and len(a_keys_2) > 0:
            for k1 in a_keys_1:
                for k2 in a_keys_2:
                    if d.is_directed():
                        if (k1, k2) not in a.edges() and\
                           (a_c[k1], a_c[k2]) in c.edges():
                            remove_edge(c, a_c[k1], a_c[k2])
                    else:
                        if (k1, k2) not in a.edges() and\
                           (k2, k1) not in a.edges():
                            if (a_c[k1], a_c[k2]) in d.edges() or\
                               (a_c[k2], a_c[k1]) in d.edges():
                                remove_edge(c, a_c[k1], a_c[k2])
    # Remove node attrs
    for a_node in a.nodes():
        attrs_to_remove = dict_sub(
            b.node[a_b[a_node]],
            a.node[a_node]
        )
        remove_node_attrs(c, a_c[a_node], attrs_to_remove)
        # removed_node_attrs[a_c[a_node]] = attrs_to_remove

    # Remove edge attrs
    for (n1, n2) in a.edges():
        attrs_to_remove = dict_sub(
            get_edge(b, a_b[n1], a_b[n2]),
            get_edge(a, n1, n2)
        )
        remove_edge_attrs(c, a_c[n1], a_c[n2], attrs_to_remove)
        # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove

    return (c, a_c, c_d)
Ejemplo n.º 9
0
def pushout(a, b, c, a_b, a_c, inplace=False):
    """Find the pushour of the span b <- a -> c."""
    check_homomorphism(a, b, a_b)
    check_homomorphism(a, c, a_c)

    if inplace is True:
        d = b
    else:
        d = copy.deepcopy(b)

    b_d = id_of(b.nodes())
    c_d = dict()

    # Add/merge nodes
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add nodes
        if len(a_keys) == 0:
            add_node(d, c_n, c.node[c_n])
            c_d[c_n] = c_n
        # Keep nodes
        elif len(a_keys) == 1:
            c_d[a_c[a_keys[0]]] = a_b[a_keys[0]]
        # Merge nodes
        else:
            nodes_to_merge = []
            for k in a_keys:
                nodes_to_merge.append(a_b[k])
            new_name = merge_nodes(d, nodes_to_merge)
            c_d[c_n] = new_name
            for node in nodes_to_merge:
                b_d[node] = new_name

    # Add edges
    for (n1, n2) in c.edges():
        if b.is_directed():
            if (c_d[n1], c_d[n2]) not in d.edges():
                add_edge(
                    d, c_d[n1], c_d[n2],
                    get_edge(c, n1, n2))
        else:
            if (c_d[n1], c_d[n2]) not in d.edges() and\
               (c_d[n2], c_d[n1]) not in d.edges():
                add_edge(
                    d, c_d[n1], c_d[n2],
                    get_edge(c, n1, n2)
                )

    # Add node attrs
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add attributes to the nodes which stayed invariant
        if len(a_keys) == 1:
            attrs_to_add = dict_sub(
                c.node[c_n],
                a.node[a_keys[0]]
            )
            add_node_attrs(d, c_d[c_n], attrs_to_add)
        # Add attributes to the nodes which were merged
        elif len(a_keys) > 1:
            merged_attrs = {}
            for k in a_keys:
                merged_attrs = merge_attributes(
                    merged_attrs,
                    a.node[k]
                )
            attrs_to_add = dict_sub(c.node[c_n], merged_attrs)
            add_node_attrs(d, c_d[c_n], attrs_to_add)

    # Add edge attrs
    for (n1, n2) in c.edges():
        d_n1 = c_d[n1]
        d_n2 = c_d[n2]
        if d.is_directed():
            attrs_to_add = dict_sub(
                get_edge(c, n1, n2),
                get_edge(d, d_n1, d_n2)
            )
            add_edge_attrs(
                d, c_d[n1], c_d[n2],
                attrs_to_add
            )
        else:
            attrs_to_add = dict_sub(
                get_edge(c, n1, n2),
                get_edge(d, d_n1, d_n2)
            )
            add_edge_attrs(
                d, c_d[n1], c_d[n2],
                attrs_to_add
            )
    return (d, b_d, c_d)
Ejemplo n.º 10
0
def remove_conflict(hie, ag_id, mm_id, locus, suffix=None):
    """duplicates a locus in order to remove conflicts"""
    ag_gr = hie.node[ag_id].graph
    ag_mm = hie.get_typing(ag_id, mm_id)
    nuggets = [
        nug for nug in tree.get_children_id_by_node(hie, ag_id, locus)
        if hie.node[nug].attrs["type"] == "nugget"
    ]

    # Do not merge nodes that are Not valid
    # As they are removed from the botom graph before the pushout
    not_valid = [locus]

    def valid_pullback_node(a, b, c, d, a_b, a_c, b_d, c_d, n):
        a_d = union_mappings(compose_homomorphisms(b_d, a_b),
                             compose_homomorphisms(c_d, a_c))
        return n not in a_d or a_d[n] not in not_valid

    (pp, pp_ag) = multi_pullback_pushout(
        ag_gr, [(hie.node[nug].graph, hie.get_typing(nug, ag_id))
                for nug in nuggets], valid_pullback_node)

    adj_nodes = [suc for suc in ag_gr.successors(locus)] + [locus]

    lhs = ag_gr.subgraph(adj_nodes)
    new_pp = pp.subgraph(reverse_image(pp_ag, adj_nodes))

    # add regions and agents that do not appear in any nuggets to the
    # preserved part, so we can remove edges from the locus to them
    to_add = {
        suc
        for suc in ag_gr.successors(locus)
        if ag_mm[suc] in ["region", "agent"]
    } - set(pp_ag.values())
    for node in to_add:
        node_id = unique_node_id(new_pp, node)
        add_node(new_pp, node_id)
        pp_ag[node_id] = node

    newpp_lhs = restrict_mapping(new_pp.nodes(), pp_ag)

    # merge loci from preserved part that arr linked to the same other loci
    def linked_to(loc):
        """loc being a locus from new_pp, returns the ag loci linked to loc """
        adj_acts = {
            pp_ag[act]
            for act in new_pp.successors(loc)
            if ag_mm[pp_ag[act]] not in ["region", "agent"]
        }
        return {
            other_loc
            for act in adj_acts for other_loc in ag_gr.predecessors(act)
            if other_loc != locus
        }

    # compute equivalence classes of loci
    loci = [pploc for pploc in new_pp if pp_ag[pploc] == locus]
    classes = [{pploc} for pploc in loci]
    partial_eq = [{loc1, loc2} for loc1 in loci for loc2 in loci
                  if loc1 != loc2 and linked_to(loc1) & linked_to(loc2)]
    for eq in partial_eq:
        classes = merge_classes(eq, classes)

    eq_gr = nx.DiGraph()
    newpp_eq = {}
    for i, cl in enumerate(classes):
        eq_gr.add_node(i)
        for node in cl:
            newpp_eq[node] = i

    (new_pp, newpp_lhs) = pushout_from_partial_mapping(new_pp, eq_gr, newpp_eq,
                                                       newpp_lhs, {})

    lhs_ag = id_of(lhs)
    rhs = copy.deepcopy(new_pp)
    rule = Rule(new_pp, lhs, rhs, newpp_lhs)
    if suffix is None:
        apply_rule_on_parent_inplace(hie, ag_id, rule, lhs_ag)
    else:
        raise ValueError("TODO? rewrite not in place")
Ejemplo n.º 11
0
def unfold_locus(hie, ag_id, mm_id, locus, suffix=None):
    """duplicate a locus that is shared between agents"""
    ag_gr = hie.node[ag_id].graph
    ag_mm = hie.get_typing(ag_id, mm_id)
    nuggets = [
        nug for nug in tree.get_children_id_by_node(hie, ag_id, locus)
        if hie.node[nug].attrs["type"] == "nugget"
    ]
    # Do not merge nodes that are Not valid
    # As they are removed from the botom graph before the pushout
    not_valid = [locus] + [
        node
        for node in ag_gr[locus] if ag_mm[node] not in ["region", "agent"]
    ]

    def valid_pullback_node(a, b, c, d, a_b, a_c, b_d, c_d, n):
        a_d = union_mappings(compose_homomorphisms(b_d, a_b),
                             compose_homomorphisms(c_d, a_c))
        return n not in a_d or a_d[n] not in not_valid

    (pp, pp_ag) = multi_pullback_pushout(
        ag_gr, [(hie.node[nug].graph, hie.get_typing(nug, ag_id))
                for nug in nuggets], valid_pullback_node)

    adj_nodes = [suc for suc in ag_gr.successors(locus)] + [locus]

    lhs = ag_gr.subgraph(adj_nodes)
    new_pp = pp.subgraph(reverse_image(pp_ag, adj_nodes))

    # add regions and agents that do not appear in any nuggets to the
    # preserved part, so we can remove edges from the locus to them
    to_add = {
        suc
        for suc in ag_gr.successors(locus)
        if ag_mm[suc] in ["region", "agent"]
    } - set(pp_ag.values())
    for node in to_add:
        node_id = unique_node_id(new_pp, node)
        add_node(new_pp, node_id)
        pp_ag[node_id] = node

    newpp_lhs = restrict_mapping(new_pp.nodes(), pp_ag)

    # merge loci that have a shared successor component
    def common_comp(loc1, loc2):
        comps1 = {
            c
            for c in new_pp.successors(loc1)
            if ag_mm[pp_ag[c]] in ["region", "agent"]
        }
        comps2 = {
            c
            for c in new_pp.successors(loc2)
            if ag_mm[pp_ag[c]] in ["region", "agent"]
        }
        return comps1 & comps2

    # compute equivalence classes of loci
    loci = [pploc for pploc in new_pp if pp_ag[pploc] == locus]
    classes = [{pploc} for pploc in loci]
    partial_eq = [{loc1, loc2} for (loc1, loc2) in combinations(loci, 2)
                  if loc1 != loc2 and common_comp(loc1, loc2)]
    for eq in partial_eq:
        classes = merge_classes(eq, classes)

    # compute equivalence classes of action nodes
    def equiv_acts(act1, act2):
        def equiv_loci(locs1, locs2):
            if len(locs1) != 1:
                raise ValueError(
                    "should have exactly one locus next to action")
            if len(locs2) != 1:
                raise ValueError(
                    "should have exactly one locus next to action")
            return any(set(locs1) | set(locs2) <= cl for cl in classes)

        return (pp_ag[act1] == pp_ag[act2] and equiv_loci(
            new_pp.predecessors(act1), new_pp.predecessors(act2)))

    actions = [
        act for act in new_pp
        if ag_mm[pp_ag[act]] in ["is_bnd", "bnd", "is_free", "brk"]
    ]
    action_classes = [{act} for act in actions]
    for (act1, act2) in combinations(actions, 2):
        if equiv_acts(act1, act2):
            action_classes = merge_classes({act1, act2}, action_classes)

    eq_gr = nx.DiGraph()
    newpp_eq = {}
    for i, cl in enumerate(classes + action_classes):
        eq_gr.add_node(i)
        for node in cl:
            newpp_eq[node] = i

    (new_pp, newpp_lhs) = pushout_from_partial_mapping(new_pp, eq_gr, newpp_eq,
                                                       newpp_lhs, {})

    lhs_ag = id_of(lhs)
    rhs = copy.deepcopy(new_pp)
    rule = Rule(new_pp, lhs, rhs, newpp_lhs)
    if suffix is None:
        apply_rule_on_parent_inplace(hie, ag_id, rule, lhs_ag)
    else:
        raise ValueError("TODO? rewrite not in place")
Ejemplo n.º 12
0
def pushout(a, b, c, a_b, a_c, inplace=False):
    """Find the pushour of the span b <- a -> c."""
    def get_classes_to_merge():
        pass

    check_homomorphism(a, b, a_b)
    check_homomorphism(a, c, a_c)

    if inplace is True:
        d = b
    else:
        d = copy.deepcopy(b)

    b_d = id_of(b.nodes())
    c_d = dict()

    # Add/merge nodes
    merged_nodes = dict()
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add nodes
        if len(a_keys) == 0:
            if c_n not in d.nodes():
                new_name = c_n
            else:
                new_name = unique_node_id(d, c_n)
            add_node(d, new_name, c.node[c_n])
            c_d[c_n] = new_name
        # Keep nodes
        elif len(a_keys) == 1:
            c_d[a_c[a_keys[0]]] = a_b[a_keys[0]]
        # Merge nodes
        else:
            nodes_to_merge = set()
            # find the nodes that need to be merged
            for k in a_keys:
                nodes_to_merge.add(a_b[k])

            # find if exists already some merged node to
            # which the new node should be merged
            groups_to_remove = set()
            new_groups = set()
            merge_done = False
            for k in merged_nodes.keys():
                if nodes_to_merge.issubset(merged_nodes[k]):
                    merge_done = True
                else:
                    intersect_with_group = nodes_to_merge.intersection(
                        merged_nodes[k])
                    if len(intersect_with_group) > 0:
                        new_nodes_to_merge =\
                            nodes_to_merge.difference(merged_nodes[k])
                        if len(new_nodes_to_merge) > 0:
                            new_nodes_to_merge.add(k)
                            new_name = merge_nodes(d, new_nodes_to_merge)
                            merged_nodes[new_name] = merged_nodes[k].union(
                                nodes_to_merge)
                            groups_to_remove.add(k)
                            new_groups.add(new_name)

            if len(groups_to_remove) > 0:
                new_name = merge_nodes(d, new_groups)
                merged_nodes[new_name] = set()
                for g in new_groups:
                    merge_nodes[new_name] = merge_nodes[new_name].union(
                        merged_nodes[g])
                for group in groups_to_remove:
                    del merged_nodes[group]
            elif not merge_done:
                new_name = merge_nodes(d, nodes_to_merge)
                merged_nodes[new_name] = nodes_to_merge
            for node in nodes_to_merge:
                c_d[c_n] = new_name
                b_d[node] = new_name

    # Add edges
    for (n1, n2) in c.edges():
        if b.is_directed():
            if (c_d[n1], c_d[n2]) not in d.edges():
                add_edge(
                    d, c_d[n1], c_d[n2],
                    get_edge(c, n1, n2))
        else:
            if (c_d[n1], c_d[n2]) not in d.edges() and\
               (c_d[n2], c_d[n1]) not in d.edges():
                add_edge(
                    d, c_d[n1], c_d[n2],
                    get_edge(c, n1, n2)
                )

    # Add node attrs
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add attributes to the nodes which stayed invariant
        if len(a_keys) == 1:
            attrs_to_add = dict_sub(
                c.node[c_n],
                a.node[a_keys[0]]
            )
            add_node_attrs(d, c_d[c_n], attrs_to_add)
        # Add attributes to the nodes which were merged
        elif len(a_keys) > 1:
            merged_attrs = {}
            for k in a_keys:
                merged_attrs = merge_attributes(
                    merged_attrs,
                    a.node[k]
                )
            attrs_to_add = dict_sub(c.node[c_n], merged_attrs)
            add_node_attrs(d, c_d[c_n], attrs_to_add)

    # Add edge attrs
    for (n1, n2) in c.edges():
        d_n1 = c_d[n1]
        d_n2 = c_d[n2]
        if d.is_directed():
            attrs_to_add = dict_sub(
                get_edge(c, n1, n2),
                get_edge(d, d_n1, d_n2)
            )
            add_edge_attrs(
                d, c_d[n1], c_d[n2],
                attrs_to_add
            )
        else:
            attrs_to_add = dict_sub(
                get_edge(c, n1, n2),
                get_edge(d, d_n1, d_n2)
            )
            add_edge_attrs(
                d, c_d[n1], c_d[n2],
                attrs_to_add
            )
    return (d, b_d, c_d)
Ejemplo n.º 13
0
def pushout(a, b, c, a_b, a_c, inplace=False):
    """Find the pushour of the span b <- a -> c."""
    check_homomorphism(a, b, a_b)
    check_homomorphism(a, c, a_c)

    if inplace is True:
        d = b
    else:
        d = copy.deepcopy(b)

    b_d = id_of(b.nodes())
    c_d = dict()

    # Add/merge nodes
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add nodes
        if len(a_keys) == 0:
            add_node(d, c_n, c.node[c_n])
            c_d[c_n] = c_n
        # Keep nodes
        elif len(a_keys) == 1:
            c_d[a_c[a_keys[0]]] = a_b[a_keys[0]]
        # Merge nodes
        else:
            nodes_to_merge = []
            for k in a_keys:
                nodes_to_merge.append(a_b[k])
            new_name = merge_nodes(d, nodes_to_merge)
            c_d[c_n] = new_name
            for node in nodes_to_merge:
                b_d[node] = new_name

    # Add edges
    for (n1, n2) in c.edges():
        if b.is_directed():
            if (c_d[n1], c_d[n2]) not in d.edges():
                add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2))
        else:
            if (c_d[n1], c_d[n2]) not in d.edges() and\
               (c_d[n2], c_d[n1]) not in d.edges():
                add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2))

    # Add node attrs
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add attributes to the nodes which stayed invariant
        if len(a_keys) == 1:
            attrs_to_add = dict_sub(c.node[c_n], a.node[a_keys[0]])
            add_node_attrs(d, c_d[c_n], attrs_to_add)
        # Add attributes to the nodes which were merged
        elif len(a_keys) > 1:
            merged_attrs = {}
            for k in a_keys:
                merged_attrs = merge_attributes(merged_attrs, a.node[k])
            attrs_to_add = dict_sub(c.node[c_n], merged_attrs)
            add_node_attrs(d, c_d[c_n], attrs_to_add)

    # Add edge attrs
    for (n1, n2) in c.edges():
        d_n1 = c_d[n1]
        d_n2 = c_d[n2]
        if d.is_directed():
            attrs_to_add = dict_sub(get_edge(c, n1, n2),
                                    get_edge(d, d_n1, d_n2))
            add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add)
        else:
            attrs_to_add = dict_sub(get_edge(c, n1, n2),
                                    get_edge(d, d_n1, d_n2))
            add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add)
    return (d, b_d, c_d)
Ejemplo n.º 14
0
def pushout(a, b, c, a_b, a_c, inplace=False):
    """Find the pushour of the span b <- a -> c."""
    check_homomorphism(a, b, a_b)
    check_homomorphism(a, c, a_c)

    if inplace is True:
        d = b
    else:
        d = copy.deepcopy(b)

    b_d = id_of(b.nodes())
    c_d = dict()

    # Add/merge nodes
    merged_nodes = dict()
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add nodes
        if len(a_keys) == 0:
            if c_n not in d.nodes():
                new_name = c_n
            else:
                new_name = unique_node_id(d, c_n)
            add_node(d, new_name, c.node[c_n])

            c_d[c_n] = new_name
        # Keep nodes
        elif len(a_keys) == 1:
            c_d[a_c[a_keys[0]]] = a_b[a_keys[0]]
        # Merge nodes
        else:
            nodes_to_merge = set()
            # find the nodes that need to be merged
            for k in a_keys:
                nodes_to_merge.add(a_b[k])

            # find if exists already some merged node to
            # which the new node should be merged
            groups_to_remove = set()
            new_groups = set()
            merge_done = False
            for k in merged_nodes.keys():
                if nodes_to_merge.issubset(merged_nodes[k]):
                    merge_done = True
                else:
                    intersect_with_group = nodes_to_merge.intersection(
                        merged_nodes[k])
                    if len(intersect_with_group) > 0:
                        new_nodes_to_merge =\
                            nodes_to_merge.difference(merged_nodes[k])
                        if len(new_nodes_to_merge) > 0:
                            new_nodes_to_merge.add(k)
                            new_name = merge_nodes(d, new_nodes_to_merge)
                            merged_nodes[new_name] = merged_nodes[k].union(
                                nodes_to_merge)
                            groups_to_remove.add(k)
                            new_groups.add(new_name)

            if len(groups_to_remove) > 0:
                new_name = merge_nodes(d, new_groups)
                merged_nodes[new_name] = set()
                for g in new_groups:
                    merge_nodes[new_name] = merge_nodes[new_name].union(
                        merged_nodes[g])
                for group in groups_to_remove:
                    del merged_nodes[group]
            elif not merge_done:
                new_name = merge_nodes(d, nodes_to_merge)
                merged_nodes[new_name] = nodes_to_merge
            for node in nodes_to_merge:
                c_d[c_n] = new_name
                b_d[node] = new_name

    # Add edges
    for (n1, n2) in c.edges():
        if b.is_directed():
            if (c_d[n1], c_d[n2]) not in d.edges():
                add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2))
        else:
            if (c_d[n1], c_d[n2]) not in d.edges() and\
               (c_d[n2], c_d[n1]) not in d.edges():
                add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2))

    # Add node attrs
    for c_n in c.nodes():
        a_keys = keys_by_value(a_c, c_n)
        # Add attributes to the nodes which stayed invariant
        if len(a_keys) == 1:
            attrs_to_add = dict_sub(c.node[c_n], a.node[a_keys[0]])
            add_node_attrs(d, c_d[c_n], attrs_to_add)
        # Add attributes to the nodes which were merged
        elif len(a_keys) > 1:
            merged_attrs = {}
            for k in a_keys:
                merged_attrs = merge_attributes(merged_attrs, a.node[k])
            attrs_to_add = dict_sub(c.node[c_n], merged_attrs)
            add_node_attrs(d, c_d[c_n], attrs_to_add)

    # Add edge attrs
    for (n1, n2) in c.edges():
        d_n1 = c_d[n1]
        d_n2 = c_d[n2]
        if d.is_directed():
            attrs_to_add = dict_sub(get_edge(c, n1, n2),
                                    get_edge(d, d_n1, d_n2))
            add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add)
        else:
            attrs_to_add = dict_sub(get_edge(c, n1, n2),
                                    get_edge(d, d_n1, d_n2))
            add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add)
    return (d, b_d, c_d)