Ejemplo n.º 1
0
def renormalization_svd(cstruct, qnbigl, qnbigr, domain, nexciton, Mmax, percent=0):
    """
        get the new mps, mpsdim, mpdqn, complementary mps to get the next guess
        with singular value decomposition method (1 root)
    """
    assert domain in ["R", "L"]

    Uset, SUset, qnlnew, Vset, SVset, qnrnew = svd_qn.Csvd(
        cstruct, qnbigl, qnbigr, nexciton, system=domain
    )
    if domain == "R":
        mps, mpsdim, mpsqn, compmps = updatemps(
            Vset, SVset, qnrnew, Uset, nexciton, Mmax, percent=percent
        )
        return (
            xp.moveaxis(mps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0),
            mpsdim,
            mpsqn,
            compmps.reshape(list(qnbigl.shape) + [mpsdim]),
        )
    else:
        mps, mpsdim, mpsqn, compmps = updatemps(
            Uset, SUset, qnlnew, Vset, nexciton, Mmax, percent=percent
        )
        return (
            mps.reshape(list(qnbigl.shape) + [mpsdim]),
            mpsdim,
            mpsqn,
            xp.moveaxis(compmps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0),
        )
Ejemplo n.º 2
0
 def apply(self, mp: MatrixProduct, canonicalise: bool=False) -> MatrixProduct:
     # todo: use meta copy to save time, could be subtle when complex type is involved
     # todo: inplace version (saved memory and can be used in `hybrid_exact_propagator`)
     new_mps = self.promote_mt_type(mp.copy())
     if mp.is_mps:
         # mpo x mps
         for i, (mt_self, mt_other) in enumerate(zip(self, mp)):
             assert mt_self.shape[2] == mt_other.shape[1]
             # mt=np.einsum("apqb,cqd->acpbd",mpo[i],mps[i])
             mt = xp.moveaxis(
                 tensordot(mt_self.array, mt_other.array, axes=([2], [1])), 3, 1
             )
             mt = mt.reshape(
                 (
                     mt_self.shape[0] * mt_other.shape[0],
                     mt_self.shape[1],
                     mt_self.shape[-1] * mt_other.shape[-1],
                 )
             )
             new_mps[i] = mt
     elif mp.is_mpo or mp.is_mpdm:
         # mpo x mpo
         for i, (mt_self, mt_other) in enumerate(zip(self, mp)):
             assert mt_self.shape[2] == mt_other.shape[1]
             # mt=np.einsum("apqb,cqrd->acprbd",mt_s,mt_o)
             mt = xp.moveaxis(
                 tensordot(mt_self.array, mt_other.array, axes=([2], [1])),
                 [-3, -2],
                 [1, 3],
             )
             mt = mt.reshape(
                 (
                     mt_self.shape[0] * mt_other.shape[0],
                     mt_self.shape[1],
                     mt_other.shape[2],
                     mt_self.shape[-1] * mt_other.shape[-1],
                 )
             )
             new_mps[i] = mt
     else:
         assert False
     orig_idx = new_mps.qnidx
     new_mps.move_qnidx(self.qnidx)
     qn = self.qn if not mp.use_dummy_qn else self.dummy_qn
     new_mps.qn = [
         np.add.outer(np.array(qn_o), np.array(qn_m)).ravel().tolist()
         for qn_o, qn_m in zip(qn, new_mps.qn)
     ]
     new_mps.qntot += self.qntot
     new_mps.move_qnidx(orig_idx)
     # concerns about whether to canonicalise:
     # * canonicalise helps to keep mps in a truly canonicalised state
     # * canonicalise comes with a cost. Unnecessary canonicalise (for example in P&C evolution and
     #   expectation calculation) hampers performance.
     if canonicalise:
         new_mps.canonicalise()
     return new_mps
Ejemplo n.º 3
0
 def apply(self, mp, canonicalise=False) -> "MpDmBase":
     # Note usually mp is an mpo
     assert not mp.is_mps
     new_mpdm = self.metacopy()
     if mp.is_complex:
         new_mpdm.to_complex(inplace=True)
     # todo: also duplicate with MPO apply. What to do???
     for i, (mt_self, mt_other) in enumerate(zip(self, mp)):
         assert mt_self.shape[2] == mt_other.shape[1]
         # mt=np.einsum("apqb,cqrd->acprbd",mt_s,mt_o)
         mt = xp.moveaxis(
             tensordot(mt_self.array, mt_other.array, axes=([2], [1])),
             [-3, -2],
             [1, 3],
         )
         mt = mt.reshape((
             mt_self.shape[0] * mt_other.shape[0],
             mt_self.shape[1],
             mt_other.shape[2],
             mt_self.shape[-1] * mt_other.shape[-1],
         ))
         new_mpdm[i] = mt
     qn = mp.dummy_qn
     new_mpdm.qn = [
         np.add.outer(np.array(qn_o), np.array(qn_m)).ravel().tolist()
         for qn_o, qn_m in zip(self.qn, qn)
     ]
     if canonicalise:
         new_mpdm.canonicalise()
     return new_mpdm
Ejemplo n.º 4
0
        def hop(x):
            nonlocal count
            count += 1
            dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat))
            if self.method == "1site":

                M1 = multi_tensor_contract(path_1, first_L, dag_struct,
                                           a_oper_isite, a_oper_isite, first_R)
                M2 = multi_tensor_contract(path_2, second_L, dag_struct,
                                           a_oper_isite, h_mpo_isite, second_R)
                M2 = xp.moveaxis(M2, (1, 2), (2, 1))
                M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite,
                                           dag_struct, h_mpo_isite, third_R)
                M3 = xp.moveaxis(M3, (1, 2), (2, 1))
                cout = M1 + 2 * M2 + M3 + dag_struct * self.eta**2
            cout = cout[self.condition(dag_qnmat, [down_exciton, up_exciton])]
            return asnumpy(cout)
Ejemplo n.º 5
0
def renormalization_ddm(cstruct, qnbigl, qnbigr, domain, nexciton, Mmax, percent=0):
    """
        get the new mps, mpsdim, mpdqn, complementary mps to get the next guess
        with diagonalize reduced density matrix method (> 1 root)
    """
    nroots = len(cstruct)
    ddm = 0.0
    for iroot in range(nroots):
        if domain == "R":
            ddm += np.tensordot(
                cstruct[iroot],
                cstruct[iroot],
                axes=(range(qnbigl.ndim), range(qnbigl.ndim)),
            )
        else:
            ddm += np.tensordot(
                cstruct[iroot],
                cstruct[iroot],
                axes=(
                    range(qnbigl.ndim, cstruct[0].ndim),
                    range(qnbigl.ndim, cstruct[0].ndim),
                ),
            )
    ddm /= float(nroots)
    if domain == "L":
        Uset, Sset, qnnew = svd_qn.Csvd(ddm, qnbigl, qnbigl, nexciton, ddm=True)
    else:
        Uset, Sset, qnnew = svd_qn.Csvd(ddm, qnbigr, qnbigr, nexciton, ddm=True)
    mps, mpsdim, mpsqn, compmps = updatemps(
        Uset, Sset, qnnew, None, nexciton, Mmax, percent=percent
    )

    if domain == "R":
        return (
            xp.moveaxis(mps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0),
            mpsdim,
            mpsqn,
            tensordot(
                asxp(cstruct[0]),
                mps.reshape(list(qnbigr.shape) + [mpsdim]),
                axes=(range(qnbigl.ndim, cstruct[0].ndim), range(qnbigr.ndim)),
            ),
        )
    else:
        return (
            mps.reshape(list(qnbigl.shape) + [mpsdim]),
            mpsdim,
            mpsqn,
            tensordot(
                mps.reshape(list(qnbigl.shape) + [mpsdim]),
                asxp(cstruct[0]),
                axes=(range(qnbigl.ndim), range(qnbigl.ndim)),
            ),
        )
Ejemplo n.º 6
0
def moveaxis(a: Matrix, source, destination):
    return Matrix(xp.moveaxis(a.array, source, destination))
Ejemplo n.º 7
0
    def optimize_cv(self, lr_group, direction, isite, num, percent=0):
        if self.spectratype == "abs":
            # quantum number restriction, |1><0|
            up_exciton, down_exciton = 1, 0
        elif self.spectratype == "emi":
            # quantum number restriction, |0><1|
            up_exciton, down_exciton = 0, 1
        nexciton = 1
        first_LR, second_LR, third_LR, forth_LR = lr_group

        if self.method == "1site":
            add_list = [isite - 1]
            first_L = asxp(first_LR[isite - 1])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 1])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 1])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 1])
            forth_R = asxp(forth_LR[isite])
        else:
            add_list = [isite - 2, isite - 1]
            first_L = asxp(first_LR[isite - 2])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 2])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 2])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 2])
            forth_R = asxp(forth_LR[isite])

        xqnmat, xqnbigl, xqnbigr, xshape = \
            self.construct_X_qnmat(add_list, direction)
        dag_qnmat, dag_qnbigl, dag_qnbigr = self.swap(xqnmat, xqnbigl, xqnbigr,
                                                      direction)

        nonzeros = np.sum(self.condition(dag_qnmat,
                                         [down_exciton, up_exciton]))

        if self.method == "1site":
            guess = moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1))
        else:
            guess = tensordot(moveaxis(self.cv_mpo[isite - 2], (1, 2), (2, 1)),
                              moveaxis(self.cv_mpo[isite - 1]),
                              axes=(-1, 0))
        guess = guess[self.condition(dag_qnmat,
                                     [down_exciton, up_exciton])].reshape(
                                         nonzeros, 1)

        if self.method == "1site":
            # define dot path
            path_1 = [([0, 1], "abc, adef -> bcdef"),
                      ([2, 0], "bcdef, begh -> cdfgh"),
                      ([1, 0], "cdfgh, fhi -> cdgi")]
            path_2 = [([0, 1], "abcd, aefg -> bcdefg"),
                      ([3, 0], "bcdefg, bfhi -> cdeghi"),
                      ([2, 0], "cdeghi, djek -> cghijk"),
                      ([1, 0], "cghijk, gilk -> chjl")]
            path_4 = [([0, 1], "ab, acde -> bcde"), ([1,
                                                      0], "bcde, ef -> bcdf")]

            vecb = multi_tensor_contract(
                path_4, forth_L,
                moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), forth_R)
            vecb = -self.eta * vecb

        a_oper_isite = asxp(self.a_oper[isite - 1])
        b_oper_isite = asxp(self.b_oper[isite - 1])
        h_mpo_isite = asxp(self.h_mpo[isite - 1])
        # construct preconditioner
        Idt = xp.identity(h_mpo_isite.shape[1])
        M1_1 = xp.einsum('aea->ae', first_L)
        M1_2 = xp.einsum('eccf->ecf', a_oper_isite)
        M1_3 = xp.einsum('dfd->df', first_R)
        M1_4 = xp.einsum('bb->b', Idt)
        path_m1 = [([0, 1], "ae,b->aeb"), ([2, 0], "aeb,ecf->abcf"),
                   ([1, 0], "abcf, df->abcd")]
        pre_M1 = multi_tensor_contract(path_m1, M1_1, M1_4, M1_2, M1_3)
        pre_M1 = pre_M1[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        M2_1 = xp.einsum('aeag->aeg', second_L)
        M2_2 = xp.einsum('eccf->ecf', b_oper_isite)
        M2_3 = xp.einsum('gbbh->gbh', h_mpo_isite)
        M2_4 = xp.einsum('dfdh->dfh', second_R)
        path_m2 = [([0, 1], "aeg,gbh->aebh"), ([2, 0], "aebh,ecf->abchf"),
                   ([1, 0], "abhcf,dfh->abcd")]
        pre_M2 = multi_tensor_contract(path_m2, M2_1, M2_3, M2_2, M2_4)
        pre_M2 = pre_M2[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        M4_1 = xp.einsum('faah->fah', third_L)
        M4_4 = xp.einsum('gddi->gdi', third_R)
        M4_5 = xp.einsum('cc->c', Idt)
        M4_path = [([0, 1], "fah,febg->ahebg"), ([2, 0], "ahebg,hjei->abgji"),
                   ([1, 0], "abgji,gdi->abjd")]
        pre_M4 = multi_tensor_contract(M4_path, M4_1, h_mpo_isite, h_mpo_isite,
                                       M4_4)
        pre_M4 = xp.einsum('abbd->abd', pre_M4)
        pre_M4 = xp.tensordot(pre_M4, M4_5, axes=0)
        pre_M4 = xp.moveaxis(pre_M4, [2, 3], [3, 2])[self.condition(
            dag_qnmat, [down_exciton, up_exciton])]

        pre_M = (pre_M1 + 2 * pre_M2 + pre_M4)

        indices = np.array(range(nonzeros))
        indptr = np.array(range(nonzeros + 1))
        pre_M = scipy.sparse.csc_matrix((asnumpy(pre_M), indices, indptr),
                                        shape=(nonzeros, nonzeros))

        M_x = lambda x: scipy.sparse.linalg.spsolve(pre_M, x)
        M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x)

        count = 0

        def hop(x):
            nonlocal count
            count += 1
            dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat, direction))
            if self.method == "1site":

                M1 = multi_tensor_contract(path_1, first_L, dag_struct,
                                           a_oper_isite, first_R)
                M2 = multi_tensor_contract(path_2, second_L, dag_struct,
                                           b_oper_isite, h_mpo_isite, second_R)
                M2 = xp.moveaxis(M2, (1, 2), (2, 1))
                M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite,
                                           dag_struct, h_mpo_isite, third_R)
                M3 = xp.moveaxis(M3, (1, 2), (2, 1))
                cout = M1 + 2 * M2 + M3
            cout = cout[self.condition(dag_qnmat,
                                       [down_exciton, up_exciton])].reshape(
                                           nonzeros, 1)
            return asnumpy(cout)

        # Matrix A and Vector b
        vecb = asnumpy(vecb)[self.condition(
            dag_qnmat, [down_exciton, up_exciton])].reshape(nonzeros, 1)
        mata = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros),
                                                  matvec=hop)

        # conjugate gradient method
        # x, info = scipy.sparse.linalg.cg(MatA, VecB, atol=0)
        if num == 1:
            x, info = scipy.sparse.linalg.cg(mata,
                                             vecb,
                                             tol=1.e-5,
                                             maxiter=500,
                                             M=M,
                                             atol=0)
        else:
            x, info = scipy.sparse.linalg.cg(mata,
                                             vecb,
                                             tol=1.e-5,
                                             x0=guess,
                                             maxiter=500,
                                             M=M,
                                             atol=0)
        # logger.info(f"linear eq dim: {nonzeros}")
        # logger.info(f'times for hop:{count}')
        self.hop_time.append(count)
        if info != 0:
            logger.warning(
                f"cg not converged, vecb.norm:{np.linalg.norm(vecb)}")
        l_value = np.inner(
            hop(x).reshape(1, nonzeros), x.reshape(1, nonzeros)) - \
            2 * np.inner(vecb.reshape(1, nonzeros), x.reshape(1, nonzeros))

        x = self.dag2mat(xshape, x, dag_qnmat, direction)
        if self.method == "1site":
            x = np.moveaxis(x, [1, 2], [2, 1])
        x, xdim, xqn, compx = self.x_svd(x,
                                         xqnbigl,
                                         xqnbigr,
                                         nexciton,
                                         direction,
                                         percent=percent)

        if self.method == "1site":
            self.cv_mpo[isite - 1] = x
            if direction == "left":
                if isite != 1:
                    self.cv_mpo[isite - 2] = \
                        tensordot(self.cv_mpo[isite - 2], compx, axes=(-1, 0))
                    self.cv_mpo.qn[isite - 1] = xqn
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(compx, self.cv_mpo[isite - 1], axes=(-1, 0))
            elif direction == "right":
                if isite != len(self.cv_mpo):
                    self.cv_mpo[isite] = \
                        tensordot(compx, self.cv_mpo[isite], axes=(-1, 0))
                    self.cv_mpo.qn[isite] = xqn
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(self.cv_mpo[isite - 1], compx, axes=(-1, 0))

        else:
            if direction == "left":
                self.cv_mpo[isite - 2] = compx
                self.cv_mpo[isite - 1] = x
            else:
                self.cv_mpo[isite - 2] = x
                self.cv_mpo[isite - 1] = compx
            self.cv_mpo.qn[isite - 1] = xqn

        return l_value[0][0]
Ejemplo n.º 8
0
    def _update_mps(self, cstruct, cidx, qnbigl, qnbigr, Mmax, percent=0):
        r"""update mps with basis selection algorithm of J. Chem. Phys. 120,
        3172 (2004).
        
        Parameters
        ---------
        cstruct : ndarray, List[ndarray]
            The active site coefficient.
        cidx : list
            The List of active site index.
        qnbigl : ndarray
            The super-L-block quantum number.
        qnbigr : ndarray
            The super-R-block quantum number.
        Mmax : int
            The maximal bond dimension.
        percent : float, int
            The percentage of renormalized basis which is equally selected from
            each quantum number section rather than according to singular
            values. ``percent`` is defined in ``procedure`` of 
            `renormalizer.utils.configs.OptimizeConfig` and ``vprocedure`` of
            `renormalizer.utils.configs.CompressConfig`.

        Returns
        -------
        averaged_ms : 
            if ``cstruct`` is a list, ``averaged_ms`` is a list of rotated ms of
                each element in ``cstruct`` as a single site calculation. It is
                used for better initial guess in SA-DMRG algorithm. Otherwise,
                ``None`` is returned.
                ``self`` is overwritten inplace. 
        
        """

        system = "L" if self.to_right else "R"

        # step 1: get the selected U, S, V
        if type(cstruct) is not list:
            # SVD method
            # full_matrices = True here to enable increase the bond dimension
            Uset, SUset, qnlnew, Vset, SVset, qnrnew = svd_qn.Csvd(
                asnumpy(cstruct), qnbigl, qnbigr, self.qntot, system=system)

            if self.to_right:
                ms, msdim, msqn, compms = select_basis(Uset,
                                                       SUset,
                                                       qnlnew,
                                                       Vset,
                                                       Mmax,
                                                       percent=percent)
                ms = ms.reshape(list(qnbigl.shape) + [msdim])
                compms = xp.moveaxis(
                    compms.reshape(list(qnbigr.shape) + [msdim]), -1, 0)

            else:
                ms, msdim, msqn, compms = select_basis(Vset,
                                                       SVset,
                                                       qnrnew,
                                                       Uset,
                                                       Mmax,
                                                       percent=percent)
                ms = xp.moveaxis(ms.reshape(list(qnbigr.shape) + [msdim]), -1,
                                 0)
                compms = compms.reshape(list(qnbigl.shape) + [msdim])

        else:
            # state-averaged method
            ddm = 0.0
            for iroot in range(len(cstruct)):
                if self.to_right:
                    ddm += tensordot(
                        cstruct[iroot],
                        cstruct[iroot],
                        axes=(
                            range(qnbigl.ndim, cstruct[iroot].ndim),
                            range(qnbigl.ndim, cstruct[iroot].ndim),
                        ),
                    )
                else:
                    ddm += tensordot(
                        cstruct[iroot],
                        cstruct[iroot],
                        axes=(range(qnbigl.ndim), range(qnbigl.ndim)),
                    )
            ddm /= len(cstruct)
            Uset, Sset, qnnew = svd_qn.Csvd(asnumpy(ddm),
                                            qnbigl,
                                            qnbigr,
                                            self.qntot,
                                            system=system,
                                            ddm=True)
            ms, msdim, msqn, compms = select_basis(Uset,
                                                   Sset,
                                                   qnnew,
                                                   None,
                                                   Mmax,
                                                   percent=percent)
            rotated_c = []
            averaged_ms = []
            if self.to_right:
                ms = ms.reshape(list(qnbigl.shape) + [msdim])
                for c in cstruct:
                    compms = tensordot(
                        ms,
                        c,
                        axes=(range(qnbigl.ndim), range(qnbigl.ndim)),
                    )
                    rotated_c.append(compms)
                compms = rotated_c[0]
            else:
                ms = ms.reshape(list(qnbigr.shape) + [msdim])
                for c in cstruct:
                    compms = tensordot(
                        c,
                        ms,
                        axes=(range(qnbigl.ndim,
                                    cstruct[0].ndim), range(qnbigr.ndim)),
                    )
                    rotated_c.append(compms)
                compms = rotated_c[0]
                ms = xp.moveaxis(ms, -1, 0)

        # step 2, put updated U, S, V back to self
        if len(cidx) == 1:
            # 1site method
            self[cidx[0]] = ms
            if self.to_right:
                if cidx[0] != self.site_num - 1:
                    if type(cstruct) is list:
                        for c in rotated_c:
                            averaged_ms.append(
                                tensordot(c, self[cidx[0] + 1], axes=1))
                    self[cidx[0] + 1] = tensordot(compms,
                                                  self[cidx[0] + 1],
                                                  axes=1)
                    self.qn[cidx[0] + 1] = msqn
                    self.qnidx = cidx[0] + 1
                else:
                    if type(cstruct) is list:
                        for c in rotated_c:
                            averaged_ms.append(
                                tensordot(self[cidx[0]], c, axes=1))
                    self[cidx[0]] = tensordot(self[cidx[0]], compms, axes=1)
                    self.qnidx = self.site_num - 1
            else:
                if cidx[0] != 0:
                    if type(cstruct) is list:
                        for c in rotated_c:
                            averaged_ms.append(
                                tensordot(self[cidx[0] - 1], c, axes=1))
                    self[cidx[0] - 1] = tensordot(self[cidx[0] - 1],
                                                  compms,
                                                  axes=1)
                    self.qn[cidx[0]] = msqn
                    self.qnidx = cidx[0] - 1
                else:
                    if type(cstruct) is list:
                        for c in rotated_c:
                            averaged_ms.append(
                                tensordot(c, self[cidx[0]], axes=1))
                    self[cidx[0]] = tensordot(compms, self[cidx[0]], axes=1)
                    self.qnidx = 0
        else:
            if self.to_right:
                self[cidx[0]] = ms
                self[cidx[1]] = compms
                self.qnidx = cidx[1]
            else:
                self[cidx[1]] = ms
                self[cidx[0]] = compms
                self.qnidx = cidx[0]
            if type(cstruct) is list:
                averaged_ms = rotated_c
            self.qn[cidx[1]] = msqn
        if type(cstruct) is list:
            return averaged_ms
        else:
            return None
Ejemplo n.º 9
0
    def optimize_cv(self, lr_group, isite, percent=0):
        if self.spectratype == "abs":
            # quantum number restriction, |1><0|
            up_exciton, down_exciton = 1, 0
        elif self.spectratype == "emi":
            # quantum number restriction, |0><1|
            up_exciton, down_exciton = 0, 1
        nexciton = 1
        first_LR, second_LR, third_LR, forth_LR = lr_group

        if self.method == "1site":
            add_list = [isite - 1]
            first_L = asxp(first_LR[isite - 1])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 1])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 1])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 1])
            forth_R = asxp(forth_LR[isite])
        else:
            add_list = [isite - 2, isite - 1]
            first_L = asxp(first_LR[isite - 2])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 2])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 2])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 2])
            forth_R = asxp(forth_LR[isite])

        xqnmat, xqnbigl, xqnbigr, xshape = \
            self.construct_X_qnmat(add_list)
        dag_qnmat, dag_qnbigl, dag_qnbigr = self.swap(xqnmat, xqnbigl, xqnbigr)
        nonzeros = int(
            np.sum(self.condition(dag_qnmat, [down_exciton, up_exciton])))

        if self.method == "1site":
            guess = moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1))
        else:
            guess = tensordot(moveaxis(self.cv_mpo[isite - 2], (1, 2), (2, 1)),
                              moveaxis(self.cv_mpo[isite - 1]),
                              axes=(-1, 0))
        guess = guess[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        if self.method == "1site":
            # define dot path
            path_1 = [([0, 1], "abcd, aefg -> bcdefg"),
                      ([3, 0], "bcdefg, bfhi -> cdeghi"),
                      ([2, 0], "cdeghi, chjk -> degijk"),
                      ([1, 0], "degijk, gikl -> dejl")]
            path_2 = [([0, 1], "abcd, aefg -> bcdefg"),
                      ([3, 0], "bcdefg, bfhi -> cdeghi"),
                      ([2, 0], "cdeghi, djek -> cghijk"),
                      ([1, 0], "cghijk, gilk -> chjl")]
            path_3 = [([0, 1], "ab, acde -> bcde"), ([1,
                                                      0], "bcde, ef -> bcdf")]

            vecb = multi_tensor_contract(
                path_3, forth_L, moveaxis(self.b_mpo[isite - 1], (1, 2),
                                          (2, 1)),
                forth_R)[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        a_oper_isite = asxp(self.a_oper[isite - 1])
        h_mpo_isite = asxp(self.h_mpo[isite - 1])
        # construct preconditioner
        Idt = xp.identity(h_mpo_isite.shape[1])
        M1_1 = xp.einsum('abca->abc', first_L)
        path_m1 = [([0, 1], "abc, bdef->acdef"), ([1,
                                                   0], "acdef, cegh->adfgh")]
        M1_2 = multi_tensor_contract(path_m1, M1_1, a_oper_isite, a_oper_isite)
        M1_2 = xp.einsum("abcbd->abcd", M1_2)
        M1_3 = xp.einsum('ecde->ecd', first_R)
        M1_4 = xp.einsum('ff->f', Idt)
        path_m1 = [([0, 1], "abcd,ecd->abe"), ([1, 0], "abe,f->abef")]
        pre_M1 = multi_tensor_contract(path_m1, M1_2, M1_3, M1_4)
        pre_M1 = xp.moveaxis(pre_M1, [-2, -1], [-1, -2])[self.condition(
            dag_qnmat, [down_exciton, up_exciton])]

        M2_1 = xp.einsum('aeag->aeg', second_L)
        M2_2 = xp.einsum('eccf->ecf', a_oper_isite)
        M2_3 = xp.einsum('gbbh->gbh', h_mpo_isite)
        M2_4 = xp.einsum('dfdh->dfh', second_R)
        path_m2 = [([0, 1], "aeg,gbh->aebh"), ([2, 0], "aebh,ecf->abchf"),
                   ([1, 0], "abhcf,dfh->abcd")]
        pre_M2 = multi_tensor_contract(path_m2, M2_1, M2_3, M2_2, M2_4)
        pre_M2 = pre_M2[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        M4_1 = xp.einsum('faah->fah', third_L)
        M4_4 = xp.einsum('gddi->gdi', third_R)
        M4_5 = xp.einsum('cc->c', Idt)
        M4_path = [([0, 1], "fah,febg->ahebg"), ([2, 0], "ahebg,hjei->abgji"),
                   ([1, 0], "abgji,gdi->abjd")]
        pre_M4 = multi_tensor_contract(M4_path, M4_1, h_mpo_isite, h_mpo_isite,
                                       M4_4)
        pre_M4 = xp.einsum('abbd->abd', pre_M4)
        pre_M4 = xp.tensordot(pre_M4, M4_5, axes=0)
        pre_M4 = xp.moveaxis(pre_M4, [2, 3], [3, 2])[self.condition(
            dag_qnmat, [down_exciton, up_exciton])]

        M_x = lambda x: asnumpy(
            asxp(x) /
            (pre_M1 + 2 * pre_M2 + pre_M4 + xp.ones(nonzeros) * self.eta**2))
        pre_M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x)

        count = 0

        def hop(x):
            nonlocal count
            count += 1
            dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat))
            if self.method == "1site":

                M1 = multi_tensor_contract(path_1, first_L, dag_struct,
                                           a_oper_isite, a_oper_isite, first_R)
                M2 = multi_tensor_contract(path_2, second_L, dag_struct,
                                           a_oper_isite, h_mpo_isite, second_R)
                M2 = xp.moveaxis(M2, (1, 2), (2, 1))
                M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite,
                                           dag_struct, h_mpo_isite, third_R)
                M3 = xp.moveaxis(M3, (1, 2), (2, 1))
                cout = M1 + 2 * M2 + M3 + dag_struct * self.eta**2
            cout = cout[self.condition(dag_qnmat, [down_exciton, up_exciton])]
            return asnumpy(cout)

        # Matrix A
        mat_a = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros),
                                                   matvec=hop)

        x, info = scipy.sparse.linalg.cg(mat_a,
                                         asnumpy(vecb),
                                         tol=1.e-5,
                                         x0=asnumpy(guess),
                                         maxiter=500,
                                         M=pre_M,
                                         atol=0)
        # logger.info(f"linear eq dim: {nonzeros}")
        # logger.info(f'times for hop:{count}')
        self.hop_time.append(count)
        if info != 0:
            logger.warning(
                f"cg not converged, vecb.norm:{xp.linalg.norm(vecb)}")
        l_value = xp.dot(asxp(hop(x)), asxp(x)) - 2 * xp.dot(vecb, asxp(x))

        x = self.dag2mat(xshape, x, dag_qnmat)
        if self.method == "1site":
            x = np.moveaxis(x, [1, 2], [2, 1])
        x, xdim, xqn, compx = self.x_svd(x,
                                         xqnbigl,
                                         xqnbigr,
                                         nexciton,
                                         percent=percent)

        if self.method == "1site":
            self.cv_mpo[isite - 1] = x
            if not self.cv_mpo.to_right:
                if isite != 1:
                    self.cv_mpo[isite - 2] = \
                        tensordot(self.cv_mpo[isite - 2], compx, axes=(-1, 0))
                    self.cv_mpo.qn[isite - 1] = xqn
                    self.cv_mpo.qnidx = isite - 2
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(compx, self.cv_mpo[isite - 1], axes=(-1, 0))
                    self.cv_mpo.qnidx = 0
            else:
                if isite != len(self.cv_mpo):
                    self.cv_mpo[isite] = \
                        tensordot(compx, self.cv_mpo[isite], axes=(-1, 0))
                    self.cv_mpo.qn[isite] = xqn
                    self.cv_mpo.qnidx = isite
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(self.cv_mpo[isite - 1], compx, axes=(-1, 0))
                    self.cv_mpo.qnidx = self.cv_mpo.site_num - 1

        else:
            if not self.cv_mpo.to_right:
                self.cv_mpo[isite - 2] = compx
                self.cv_mpo[isite - 1] = x
                self.cv_mpo.qnidx = isite - 2
            else:
                self.cv_mpo[isite - 2] = x
                self.cv_mpo[isite - 1] = compx
                self.cv_mpo.qnidx = isite - 1
            self.cv_mpo.qn[isite - 1] = xqn

        return float(l_value)