Ejemplo n.º 1
0
def test_tmva():
    # check classifier
    check_classifier(TMVAClassifier(),
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)

    cl = TMVAClassifier(method='kSVM',
                        Gamma=0.25,
                        Tol=0.001,
                        sigmoid_function='identity')
    check_classifier(cl,
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)

    cl = TMVAClassifier(method='kCuts',
                        FitMethod='GA',
                        EffMethod='EffSel',
                        sigmoid_function='sig_eff=0.9')
    check_classifier(cl,
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)
    # check regressor, need to run twice to check for memory leak.
    for i in range(2):
        check_regression(TMVARegressor(),
                         check_instance=True,
                         has_staged_predictions=False,
                         has_importances=False)
Ejemplo n.º 2
0
def test_complex_stacking_tmva():
    # Ada over kFold over TMVA
    base_kfold = FoldingClassifier(base_estimator=TMVAClassifier(),
                                   random_state=13)
    check_classifier(SklearnClassifier(
        clf=AdaBoostClassifier(base_estimator=base_kfold, n_estimators=3)),
                     has_staged_pp=False,
                     has_importances=False)
Ejemplo n.º 3
0
def test_tmva():
    # check classifier
    factory_options = "Silent=True:V=False:DrawProgressBar=False"
    cl = TMVAClassifier(factory_options=factory_options,
                        method='kBDT',
                        NTrees=10)
    check_classifier(cl,
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)

    cl = TMVAClassifier(factory_options=factory_options,
                        method='kSVM',
                        Gamma=0.25,
                        Tol=0.001,
                        sigmoid_function='identity')
    check_classifier(cl,
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)

    cl = TMVAClassifier(factory_options=factory_options,
                        method='kCuts',
                        FitMethod='GA',
                        EffMethod='EffSel',
                        sigmoid_function='sig_eff=0.9')
    check_classifier(cl,
                     check_instance=True,
                     has_staged_pp=False,
                     has_importances=False)
    # check regressor, need to run twice to check for memory leak.
    for i in range(2):
        check_regression(TMVARegressor(factory_options=factory_options,
                                       method='kBDT',
                                       NTrees=10),
                         check_instance=True,
                         has_staged_predictions=False,
                         has_importances=False)
Ejemplo n.º 4
0
def grid_tmva(score_function):
    grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]})

    generator = SubgridParameterOptimizer(grid_param)
    scorer = FoldingScorer(score_function)
    from rep.estimators import TMVAClassifier

    grid = GridOptimalSearchCV(TMVAClassifier(features=['column0', 'column1']),
                               generator, scorer)

    cl = check_grid(grid, False, False, False)
    assert 1 <= len(cl.features) <= 3
    params = cl.get_params()
    for key in grid_param:
        assert params[key] == grid.generator.best_params_[key]
Ejemplo n.º 5
0
def test_gridsearch_on_tmva():
    metric = numpy.random.choice([OptimalAMS(), RocAuc()])
    scorer = FoldingScorer(metric)

    grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]})
    generator = SubgridParameterOptimizer(grid_param)

    try:
        from rep.estimators import TMVAClassifier

        grid = GridOptimalSearchCV(
            TMVAClassifier(features=['column0', 'column1']), generator, scorer)
        classifier = check_grid(grid, False, False, False)
        # checking parameters
        assert len(classifier.features) == 2
        params = classifier.get_params()
        for key in grid_param:
            assert params[key] == grid.generator.best_params_[key]
    except ImportError:
        pass
Ejemplo n.º 6
0
def test_gridsearch_on_tmva():
    metric = numpy.random.choice([OptimalAMS(), RocAuc()])
    scorer = FoldingScorer(metric)

    grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]})
    generator = SubgridParameterOptimizer(n_evaluations=5,
                                          param_grid=grid_param)

    try:
        from rep.estimators import TMVAClassifier

        base_tmva = TMVAClassifier(
            factory_options="Silent=True:V=False:DrawProgressBar=False",
            features=['column0', 'column1'],
            method='kBDT')
        grid = GridOptimalSearchCV(base_tmva, generator, scorer)
        classifier = check_grid(grid, False, False, False)
        # checking parameters
        assert len(classifier.features) == 2
        params = classifier.get_params()
        for key in grid_param:
            assert params[key] == grid.generator.best_params_[key]
    except ImportError:
        pass
Ejemplo n.º 7
0
def test_simple_stacking_tmva():
    base_tmva = TMVAClassifier()
    check_classifier(SklearnClassifier(clf=BaggingClassifier(
        base_estimator=base_tmva, n_estimators=3, random_state=13)),
                     has_staged_pp=False,
                     has_importances=False)
Ejemplo n.º 8
0
def test_complex_stacking_tmva():
    # Ada over kFold over TMVA
    base_kfold = FoldingClassifier(base_estimator=TMVAClassifier(factory_options="Silent=True:V=False:DrawProgressBar=False",
                                                                 method='kBDT', NTrees=10), random_state=13)
    check_classifier(SklearnClassifier(clf=AdaBoostClassifier(base_estimator=base_kfold, n_estimators=3)),
                     has_staged_pp=False, has_importances=False)
Ejemplo n.º 9
0
def test_simple_stacking_tmva():
    base_tmva = TMVAClassifier(factory_options="Silent=True:V=False:DrawProgressBar=False")
    check_classifier(SklearnClassifier(clf=BaggingClassifier(base_estimator=base_tmva, n_estimators=3, random_state=13)),
                     has_staged_pp=False, has_importances=False)