Ejemplo n.º 1
0
def test_bias_on_unbiased(method, rng):
    data = (0, 1, 2, 3)
    r = bias(np.mean, data, method=method, random_state=rng)

    if method == "balanced":
        # bias is exactly zero for linear functions with the balanced bootstrap
        assert r == 0
    else:
        # bias is not exactly zero for ordinary bootstrap
        assert r == pytest.approx(0)
Ejemplo n.º 2
0
def test_bias_on_biased(method, rng):
    def biased(x):
        return np.var(x, ddof=0)

    data = np.arange(100)
    bad = biased(data)
    correct = np.var(data, ddof=1)

    r = bias(biased, data, method=method, size=10000, random_state=rng)
    sample_bias = bad - correct
    assert r == pytest.approx(sample_bias, rel=0.05)
Ejemplo n.º 3
0
def test_bias_on_biased_2(method, rng):
    def biased(x):
        n = len(x)
        return (np.sum(x) + 2) / n

    data = np.arange(100)
    bad = biased(data)
    correct = np.mean(data)

    r = bias(biased, data, method=method, size=10000, random_state=rng)
    sample_bias = bad - correct
    assert r == pytest.approx(sample_bias, rel=0.1)