Ejemplo n.º 1
0
def small_grid_and_surface(
        tmp_model: Model) -> Tuple[grr.RegularGrid, rqs.Surface]:
    """Creates a small RegularGrid and a random triangular surface."""
    crs = Crs(tmp_model)
    crs.create_xml()

    extent = 10
    extent_kji = (extent, extent, extent)
    dxyz = (1.0, 1.0, 1.0)
    crs_uuid = crs.uuid
    title = "small_grid"
    grid = grr.RegularGrid(tmp_model,
                           extent_kji=extent_kji,
                           dxyz=dxyz,
                           crs_uuid=crs_uuid,
                           title=title)
    grid.create_xml()

    n_points = 100
    points = np.random.rand(n_points, 3) * extent
    triangles = tri.dt(points)
    surface = rqs.Surface(tmp_model, crs_uuid=crs_uuid, title="small_surface")
    surface.set_from_triangles_and_points(triangles, points)
    surface.triangles_and_points()
    surface.write_hdf5()
    surface.create_xml()

    tmp_model.store_epc()

    return grid, surface
Ejemplo n.º 2
0
def test_find_faces_to_represent_surface_regular_wrapper(
        small_grid_and_surface: Tuple[RegularGrid, Surface]):
    # Arrange
    grid, surface = small_grid_and_surface
    grid_epc = surface_epc = grid.model.epc_file
    grid_uuid = grid.uuid
    surface_uuid = surface.uuid

    name = "test"
    input_index = 0
    use_index_as_realisation = False

    # Act
    index, success, epc_file, uuid_list = find_faces_to_represent_surface_regular_wrapper(
        input_index, use_index_as_realisation, grid_epc, grid_uuid,
        surface_epc, surface_uuid, name)
    model = Model(epc_file=epc_file)
    rm_tree("tmp_dir")

    # Assert
    assert success is True
    assert index == input_index
    assert len(model.uuids(obj_type='LocalDepth3dCrs')) == 1
    assert len(model.uuids(obj_type='IjkGridRepresentation')) == 1
    assert len(model.uuids(obj_type='TriangulatedSetRepresentation')) == 1
    assert len(model.uuids(obj_type='GridConnectionSetRepresentation')) == 1
    assert len(model.uuids(obj_type='FaultInterpretation')) == 1
    assert len(model.uuids(obj_type='TectonicBoundaryFeature')) == 1
    assert len(model.uuids()) == 6
    assert len(uuid_list) == 3
Ejemplo n.º 3
0
def test_MdDatum(example_model_and_crs):

    # Set up a new datum
    model, crs = example_model_and_crs
    epc = model.epc_file
    data = dict(
        location=(0, -99999, 3.14),
        md_reference='mean low water',
    )
    datum = resqpy.well.MdDatum(parent_model=model, crs_uuid=crs.uuid, **data)
    uuid = datum.uuid

    # Save to disk and reload
    datum.create_part()
    model.store_epc()

    del model, crs, datum
    model2 = Model(epc_file=epc)
    datum2 = resqpy.well.MdDatum(parent_model=model2, uuid=uuid)

    for key, expected_value in data.items():
        assert getattr(datum2, key) == expected_value, f"Issue with {key}"

    identical = resqpy.well.MdDatum(parent_model=model2,
                                    crs_uuid=datum2.crs_uuid,
                                    **data)
    data['md_reference'] = 'kelly bushing'
    different = resqpy.well.MdDatum(parent_model=model2,
                                    crs_uuid=datum2.crs_uuid,
                                    **data)
    assert identical == datum2
    assert different != datum2
Ejemplo n.º 4
0
def test_volume_multiple_property_collection(
        example_model_with_properties: Model):
    # Arrange
    grid = example_model_with_properties.grid()
    extent = grid.extent_kji
    property_collection = grid.property_collection
    volume_array_gross = np.random.random(extent)
    property_collection.add_cached_array_to_imported_list(
        volume_array_gross,
        'test data',
        'DZ',
        property_kind='rock volume',
        facet_type='netgross',
        facet='gross')
    volume_array_net = np.random.random(extent) / 2
    property_collection.add_cached_array_to_imported_list(
        volume_array_net,
        'test data',
        'DZ',
        property_kind='rock volume',
        facet_type='netgross',
        facet='net')
    property_collection.write_hdf5_for_imported_list()
    property_collection.create_xml_for_imported_list_and_add_parts_to_model()
    if hasattr(grid, 'array_volume'):
        delattr(grid, 'array_volume')

    # Act
    volume = cp.volume(grid, property_collection=property_collection)

    # Assert
    np.testing.assert_array_almost_equal(volume, volume_array_gross)
Ejemplo n.º 5
0
def test_thickness_property_collection(example_model_with_properties: Model):
    # Arrange
    grid = example_model_with_properties.grid()
    extent = grid.extent_kji
    property_collection = grid.property_collection
    thickness_array = np.random.random(extent)
    property_collection.add_cached_array_to_imported_list(
        thickness_array,
        'test data',
        'DZ',
        False,
        uom=grid.z_units(),
        property_kind='cell length',
        facet_type='direction',
        indexable_element='cells',
        facet='K')
    property_collection.write_hdf5_for_imported_list()
    property_collection.create_xml_for_imported_list_and_add_parts_to_model()
    if hasattr(grid, 'array_thickness'):
        delattr(grid, 'array_thickness')

    # Act
    thickness = cp.thickness(grid, property_collection=property_collection)

    # Assert
    np.testing.assert_array_almost_equal(thickness, thickness_array)
Ejemplo n.º 6
0
    def __enter__(self) -> Model:
        """Enter the runtime context, return a model."""

        if self.mode in ["read", "read/write"]:
            if not os.path.exists(self.epc_file):
                raise FileNotFoundError(self.epc_file)
            self._model = Model(epc_file=str(self.epc_file))

        else:
            assert self.mode == "create"
            for file in [self.epc_file, self.epc_file[:-4] + '.h5']:
                if os.path.exists(file):
                    os.remove(file)
                    log.info('old file deleted: ' + str(file))
            self._model = new_model(self.epc_file)

        return self._model
Ejemplo n.º 7
0
def test_WellboreFrame(example_model_and_crs):
    # Test that all attributes are correctly saved and loaded from disk

    # --------- Arrange ----------
    # Create a WellboreFrame object in memory
    # Load example model from a fixture
    model, crs = example_model_and_crs
    epc_path = model.epc_file

    # Create a trajectory
    well_name = 'Banoffee'
    elevation = 100
    datum = resqpy.well.MdDatum(parent_model = model,
                                crs_uuid = crs.uuid,
                                location = (0, 0, -elevation),
                                md_reference = 'kelly bushing')
    mds = np.array([300, 310, 330])
    zs = mds - elevation
    source_dataframe = pd.DataFrame({
        'MD': mds,
        'X': [1, 2, 3],
        'Y': [1, 2, 3],
        'Z': zs,
    })
    trajectory = resqpy.well.Trajectory(parent_model = model,
                                        data_frame = source_dataframe,
                                        well_name = well_name,
                                        md_datum = datum,
                                        length_uom = 'm')
    trajectory.write_hdf5()
    trajectory.create_xml()

    # Create a wellbore frame object
    wellbore_frame_mds = np.array([305, 315])
    wellbore_frame = resqpy.well.WellboreFrame(parent_model = model,
                                               trajectory = trajectory,
                                               mds = wellbore_frame_mds,
                                               title = 'WellboreFrame_1',
                                               originator = 'Person_1')

    # ----------- Act ---------
    # Save to disk
    wellbore_frame.write_hdf5()
    wellbore_frame.create_xml()
    wellbore_frame_uuid = wellbore_frame.uuid
    model.store_epc()
    model.h5_release()

    # Clear memory
    del model, datum, trajectory, wellbore_frame

    # Reload from disk
    model2 = Model(epc_file = epc_path)
    wellbore_frame_2 = resqpy.well.WellboreFrame(parent_model = model2, uuid = wellbore_frame_uuid)

    # ----------- Assert ---------
    assert wellbore_frame_2.node_count == 2
    np.testing.assert_equal(wellbore_frame_2.node_mds, wellbore_frame_mds)
Ejemplo n.º 8
0
def test_face_centre_invalid_axis(example_model_with_properties: Model):
    # Arrange
    grid = example_model_with_properties.grid()
    cell = (1, 1, 1)
    axis = 4
    zero_or_one = 0

    # Act & Assert
    with pytest.raises(ValueError):
        ff.face_centre(grid, cell, axis, zero_or_one)
Ejemplo n.º 9
0
def test_thickness_from_points(example_model_with_properties: Model):
    # Arrange
    grid = example_model_with_properties.grid()
    if hasattr(grid, 'array_thickness'):
        delattr(grid, 'array_thickness')
    if hasattr(grid, 'property_collection'):
        delattr(grid, 'property_collection')

    # Act
    thickness = cp.thickness(grid)

    # Assert
    np.testing.assert_array_almost_equal(thickness, 20.0)
Ejemplo n.º 10
0
def test_volume_from_points(example_model_with_properties: Model):
    # Arrange
    grid = example_model_with_properties.grid()
    if hasattr(grid, 'array_volume'):
        delattr(grid, 'array_thickness')
    if hasattr(grid, 'property_volume'):
        delattr(grid, 'property_collection')

    # Act
    volume = cp.volume(grid)

    # Assert
    np.testing.assert_array_almost_equal(volume, 100000.0)
Ejemplo n.º 11
0
def test_Trajectory_load_from_xml(example_model_and_crs):

    # --------- Arrange ----------
    model, crs = example_model_and_crs
    epc_path = model.epc_file
    elevation = 100
    # Create a measured depth datum
    datum = resqpy.well.MdDatum(parent_model = model,
                                crs_uuid = crs.uuid,
                                location = (0, 0, -elevation),
                                md_reference = 'kelly bushing')
    datum.create_xml()
    mds = np.array([300, 310, 330, 340])
    zs = mds - elevation
    well_name = 'JubJub'
    source_dataframe = pd.DataFrame({
        'MD': mds,
        'X': [100, 120, 140, 160],
        'Y': [345, 365, 386, 400],
        'Z': zs,
        'WELL': ['JubJub', 'JubJub', 'JubJub', 'JubJub']
    })

    # Create a trajectory from dataframe
    trajectory = resqpy.well.Trajectory(parent_model = model,
                                        data_frame = source_dataframe,
                                        well_name = well_name,
                                        md_datum = datum,
                                        length_uom = 'm')

    # --------- Act ----------
    # Save to disk
    trajectory.write_hdf5()
    trajectory.create_xml()
    trajectory_uuid = trajectory.uuid
    model.store_epc()
    model.h5_release()

    # Reload from disk
    model2 = Model(epc_file = epc_path)
    trajectory2 = resqpy.well.Trajectory(model2, uuid = trajectory_uuid, set_tangent_vectors = True)

    # --------- Assert --------------
    # Check all attributes were loaded from disk correctly
    assert trajectory2 is not None
    assert trajectory2.well_name == well_name
    np.testing.assert_almost_equal(trajectory2.measured_depths, mds)
    assert trajectory2.md_datum == datum
    assert trajectory2.md_uom == 'm'
Ejemplo n.º 12
0
def example_fine_coarse_model(example_model_and_crs):
    model, crs = example_model_and_crs

    coarse_grid = grr.RegularGrid(parent_model=model,
                                  origin=(0, 0, 0),
                                  extent_kji=(3, 5, 5),
                                  crs_uuid=crs.uuid,
                                  dxyz=(10, 10, 10))
    coarse_grid.cache_all_geometry_arrays()
    coarse_grid.write_hdf5_from_caches(
        file=model.h5_file_name(file_must_exist=False), mode='w')
    coarse_grid.create_xml(ext_uuid=model.h5_uuid(),
                           title='Coarse',
                           write_geometry=True,
                           add_cell_length_properties=True)

    fine_grid = grr.RegularGrid(parent_model=model,
                                origin=(0, 0, 0),
                                extent_kji=(6, 10, 10),
                                crs_uuid=crs.uuid,
                                dxyz=(5, 5, 5))
    fine_grid.cache_all_geometry_arrays()
    fine_grid.write_hdf5_from_caches(
        file=model.h5_file_name(file_must_exist=True), mode='a')
    fine_grid.create_xml(ext_uuid=model.h5_uuid(),
                         title='Fine',
                         write_geometry=True,
                         add_cell_length_properties=True)

    model.store_epc()
    model = Model(model.epc_file)

    coarse = grr.Grid(parent_model=model, uuid=coarse_grid.uuid)
    fine = grr.Grid(parent_model=model, uuid=fine_grid.uuid)

    fc = rqfc.FineCoarse(fine_extent_kji=(6, 10, 10),
                         coarse_extent_kji=(3, 5, 5))
    fc.set_all_ratios_constant()
    fc.set_all_proprtions_equal()

    return model, coarse, fine, fc
Ejemplo n.º 13
0
def test_organize_classes(tmp_model, cls, data):

    # Load example model from a fixture
    model = tmp_model
    epc = model.epc_file

    # Create the feature
    obj = cls(parent_model = model, **data)
    uuid = obj.uuid

    # Save to disk
    obj.create_xml()
    model.store_epc()
    model.h5_release()

    # Reload from disk
    del model, obj
    model2 = Model(epc_file = epc)
    obj2 = cls(parent_model = model2, uuid = uuid)

    # Check all attributes were loaded correctly
    for key, expected_value in data.items():
        assert getattr(obj2, key) == expected_value, f"Error for {key}"
Ejemplo n.º 14
0
def faulted_grid(test_data_path) -> Grid:
    current_filename = os.path.split(getsourcefile(lambda: 0))[0]
    base_folder = os.path.dirname(os.path.dirname(current_filename))
    epc_file = base_folder + '/test_data/wren/wren.epc'
    model = Model(epc_file=epc_file)
    return model.grid(title='faulted grid')
Ejemplo n.º 15
0
def example_model_with_prop_ts_rels(tmp_path):
    """Model with a grid (5x5x3) and properties.
   Properties:
   - Zone (discrete)
   - VPC (discrete)
   - Fault block (discrete)
   - Facies (discrete)
   - NTG (continuous)
   - POR (continuous)
   - SW (continuous) (recurrent)
   """
    model_path = str(tmp_path / 'test_model.epc')
    model = Model(create_basics=True,
                  create_hdf5_ext=True,
                  epc_file=model_path,
                  new_epc=True)
    model.store_epc(model.epc_file)

    grid = grr.RegularGrid(parent_model=model,
                           origin=(0, 0, 0),
                           extent_kji=(3, 5, 5),
                           crs_uuid=rqet.uuid_for_part_root(model.crs_root),
                           set_points_cached=True)
    grid.cache_all_geometry_arrays()
    grid.write_hdf5_from_caches(file=model.h5_file_name(file_must_exist=False),
                                mode='w')

    grid.create_xml(ext_uuid=model.h5_uuid(),
                    title='grid',
                    write_geometry=True,
                    add_cell_length_properties=False)
    model.store_epc()

    zone = np.ones(shape=(5, 5), dtype='int')
    zone_array = np.array([zone, zone + 1, zone + 2], dtype='int')

    vpc = np.array([[1, 1, 1, 2, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 2],
                    [1, 1, 1, 2, 2], [1, 1, 1, 2, 2]],
                   dtype='int')
    vpc_array = np.array([vpc, vpc, vpc], dtype='int')

    facies = np.array([[1, 1, 1, 2, 2], [1, 1, 2, 2, 2], [1, 2, 2, 2, 3],
                       [2, 2, 2, 3, 3], [2, 2, 3, 3, 3]],
                      dtype='int')
    facies_array = np.array([facies, facies, facies], dtype='int')

    perm = np.array([[1, 1, 1, 10, 10], [1, 1, 1, 10, 10], [1, 1, 1, 10, 10],
                     [1, 1, 1, 10, 10], [1, 1, 1, 10, 10]])
    perm_array = np.array([perm, perm, perm], dtype='float')

    fb = np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1],
                   [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]],
                  dtype='int')
    fb_array = np.array([fb, fb, fb], dtype='int')

    ntg = np.array([[0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0]])
    ntg1_array = np.array([ntg, ntg, ntg])
    ntg2_array = np.array([ntg + 0.1, ntg + 0.1, ntg + 0.1])

    por = np.array([[1, 1, 1, 1, 1], [0.5, 0.5, 0.5, 0.5,
                                      0.5], [1, 1, 1, 1, 1],
                    [0.5, 0.5, 0.5, 0.5, 0.5], [1, 1, 1, 1, 1]])
    por1_array = np.array([por, por, por])
    por2_array = np.array([por - 0.1, por - 0.1, por - 0.1])

    sat = np.array([[1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1]])
    sat1_array = np.array([sat, sat, sat])
    sat2_array = np.array([sat, sat, np.where(sat == 0.5, 0.75, sat)])
    sat3_array = np.array([
        np.where(sat == 0.5, 0.75, sat),
        np.where(sat == 0.5, 0.75, sat),
        np.where(sat == 0.5, 0.75, sat)
    ])

    collection = rqp.GridPropertyCollection()
    collection.set_grid(grid)

    ts = rqts.TimeSeries(parent_model=model, first_timestamp='2000-01-01Z')
    ts.extend_by_days(365)
    ts.extend_by_days(365)

    ts.create_xml()

    lookup = rqp.StringLookup(parent_model=model,
                              int_to_str_dict={
                                  1: 'channel',
                                  2: 'interbedded',
                                  3: 'shale'
                              })
    lookup.create_xml()

    model.store_epc()

    # Add non-varying properties
    for array, name, kind, discrete, facet_type, facet in zip(
        [zone_array, vpc_array, fb_array, perm_array],
        ['Zone', 'VPC', 'Fault block', 'Perm'],
        ['discrete', 'discrete', 'discrete', 'permeability rock'],
        [True, True, True, False], [None, None, None, 'direction'],
        [None, None, None, 'J']):
        collection.add_cached_array_to_imported_list(cached_array=array,
                                                     source_info='',
                                                     keyword=name,
                                                     discrete=discrete,
                                                     uom=None,
                                                     time_index=None,
                                                     null_value=None,
                                                     property_kind=kind,
                                                     facet_type=facet_type,
                                                     facet=facet,
                                                     realization=None)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model()

    # Add realisation varying properties
    for array, name, kind, rel in zip(
        [ntg1_array, por1_array, ntg2_array, por2_array],
        ['NTG', 'POR', 'NTG', 'POR'],
        ['net to gross ratio', 'porosity', 'net to gross ratio', 'porosity'],
        [0, 0, 1, 1]):
        collection.add_cached_array_to_imported_list(cached_array=array,
                                                     source_info='',
                                                     keyword=name,
                                                     discrete=False,
                                                     uom=None,
                                                     time_index=None,
                                                     null_value=None,
                                                     property_kind=kind,
                                                     facet_type=None,
                                                     facet=None,
                                                     realization=rel)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model()

    # Add categorial property
    collection.add_cached_array_to_imported_list(cached_array=facies_array,
                                                 source_info='',
                                                 keyword='Facies',
                                                 discrete=True,
                                                 uom=None,
                                                 time_index=None,
                                                 null_value=None,
                                                 property_kind='discrete',
                                                 facet_type=None,
                                                 facet=None,
                                                 realization=None)
    collection.write_hdf5_for_imported_list()
    collection.create_xml_for_imported_list_and_add_parts_to_model(
        string_lookup_uuid=lookup.uuid)

    # Add time varying properties
    for array, ts_index in zip([sat1_array, sat2_array, sat3_array],
                               [0, 1, 2]):
        collection.add_cached_array_to_imported_list(
            cached_array=array,
            source_info='',
            keyword='SW',
            discrete=False,
            uom=None,
            time_index=ts_index,
            null_value=None,
            property_kind='saturation',
            facet_type='what',
            facet='water',
            realization=None)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model(
            time_series_uuid=ts.uuid)
    model.store_epc()

    return model
Ejemplo n.º 16
0
def example_model_with_properties(tmp_path):
    """Model with a grid (5x5x3) and properties.
   Properties:
   - Zone (discrete)
   - VPC (discrete)
   - Fault block (discrete)
   - Facies (discrete)
   - NTG (continuous)
   - POR (continuous)
   - SW (continuous)
   """
    model_path = str(tmp_path / 'test_no_rels.epc')
    model = Model(create_basics=True,
                  create_hdf5_ext=True,
                  epc_file=model_path,
                  new_epc=True)
    model.store_epc(model.epc_file)

    grid = grr.RegularGrid(parent_model=model,
                           origin=(0, 0, 0),
                           extent_kji=(3, 5, 5),
                           crs_uuid=rqet.uuid_for_part_root(model.crs_root),
                           set_points_cached=True)
    grid.cache_all_geometry_arrays()
    grid.write_hdf5_from_caches(file=model.h5_file_name(file_must_exist=False),
                                mode='w')

    grid.create_xml(ext_uuid=model.h5_uuid(),
                    title='grid',
                    write_geometry=True,
                    add_cell_length_properties=False)
    model.store_epc()

    zone = np.ones(shape=(5, 5))
    zone_array = np.array([zone, zone + 1, zone + 2], dtype='int')

    vpc = np.array([[1, 1, 1, 2, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 2],
                    [1, 1, 1, 2, 2], [1, 1, 1, 2, 2]])
    vpc_array = np.array([vpc, vpc, vpc])

    facies = np.array([[1, 1, 1, 2, 2], [1, 1, 2, 2, 2], [1, 2, 2, 2, 3],
                       [2, 2, 2, 3, 3], [2, 2, 3, 3, 3]])
    facies_array = np.array([facies, facies, facies])

    fb = np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1],
                   [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]])
    fb_array = np.array([fb, fb, fb])

    ntg = np.array([[0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0]])
    ntg_array = np.array([ntg, ntg, ntg])

    por = np.array([[1, 1, 1, 1, 1], [0.5, 0.5, 0.5, 0.5,
                                      0.5], [1, 1, 1, 1, 1],
                    [0.5, 0.5, 0.5, 0.5, 0.5], [1, 1, 1, 1, 1]])
    por_array = np.array([por, por, por])

    sat = np.array([[1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1]])
    sat_array = np.array([sat, sat, sat])

    perm = np.array([[1, 10, 10, 100, 100], [1, 10, 10, 100, 100],
                     [1, 10, 10, 100, 100], [1, 10, 10, 100, 100],
                     [1, 10, 10, 100, 100]])
    perm_array = np.array([perm, perm, perm], dtype='float')
    perm_v_array = perm_array * 0.1

    collection = rqp.GridPropertyCollection()
    collection.set_grid(grid)
    for array, name, kind, discrete, facet_type, facet in zip(
        [
            zone_array, vpc_array, fb_array, facies_array, ntg_array,
            por_array, sat_array, perm_array, perm_v_array
        ], [
            'Zone', 'VPC', 'Fault block', 'Facies', 'NTG', 'POR', 'SW', 'Perm',
            'PERMZ'
        ], [
            'discrete', 'discrete', 'discrete', 'discrete',
            'net to gross ratio', 'porosity', 'saturation',
            'rock permeability', 'permeability rock'
        ], [True, True, True, True, False, False, False, False, False],
        [None, None, None, None, None, None, None, 'direction', 'direction'],
        [None, None, None, None, None, None, None, 'I', 'K']):
        collection.add_cached_array_to_imported_list(cached_array=array,
                                                     source_info='',
                                                     keyword=name,
                                                     discrete=discrete,
                                                     uom=None,
                                                     time_index=None,
                                                     null_value=None,
                                                     property_kind=kind,
                                                     facet_type=facet_type,
                                                     facet=facet,
                                                     realization=None)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model()
    model.store_epc()

    return model
Ejemplo n.º 17
0
def find_faces_to_represent_surface_regular_wrapper(
    index: int,
    use_index_as_realisation: bool,
    grid_epc: str,
    grid_uuid: Union[UUID, str],
    surface_epc: str,
    surface_uuid: Union[UUID, str],
    name: str,
    title: Optional[str] = None,
    centres: Optional[np.ndarray] = None,
    agitate: bool = False,
    feature_type='fault',
    progress_fn: Optional[Callable] = None,
    consistent_side: bool = False,
    return_properties: Optional[List[str]] = None,
) -> Tuple[int, bool, str, List[Union[UUID, str]]]:
    """Wrapper function of find_faces_to_represent_surface_regular_optimised.

    Used for multiprocessing to create a new model that is saved in a temporary epc file
    and returns the required values, which are used in the multiprocessing function to
    recombine all the objects into a single epc file.

    Args:
        index (int): the index of the function call from the multiprocessing function.
        use_index_as_realisation (bool): if True, uses the index number as the realization number on
            the property collection.
        grid_epc (str): epc file path where the grid is saved.
        grid_uuid (UUID/str): UUID (universally unique identifier) of the grid object.
        surface_epc (str): epc file path where the surface is saved.
        surface_uuid (UUID/str): UUID (universally unique identifier) of the surface object.
        name (str): the feature name to use in the grid connection set.
        title (str): the citation title to use for the grid connection set; defaults to name
        centres (np.ndarray, shape (nk, nj, ni, 3)): precomputed cell centre points in
           local grid space, to avoid possible crs issues; required if grid's crs includes an origin (offset)?
        agitate (bool): if True, the points of the surface are perturbed by a small random
           offset, which can help if the surface has been built from a regular mesh with a periodic resonance
           with the grid
        feature_type (str, default 'fault'): one of 'fault', 'horizon', or 'geobody boundary'
        progress_fn (Callable): a callback function to be called at intervals by this function;
           the argument will progress from 0.0 to 1.0 in unspecified and uneven increments
        consistent_side (bool): if True, the cell pairs will be ordered so that all the first
           cells in each pair are on one side of the surface, and all the second cells on the other
        return_properties (List[str]): if present, a list of property arrays to calculate and
           return as a dictionary; recognised values in the list are 'triangle', 'offset' and 'normal vector';
           triangle is an index into the surface triangles of the triangle detected for the gcs face; offset
           is a measure of the distance between the centre of the cell face and the intersection point of the
           inter-cell centre vector with a triangle in the surface; normal vector is a unit vector normal
           to the surface triangle; each array has an entry for each face in the gcs; the returned dictionary
           has the passed strings as keys and numpy arrays as values.

    Returns:
        Tuple containing:

            - index (int): the index passed to the function.
            - success (bool): whether the function call was successful, whatever that
                definiton is.
            - epc_file (str): the epc file path where the objects are stored.
            - uuid_list (List[str]): list of UUIDs of relevant objects.
    """
    surface = Surface(parent_model=Model(surface_epc), uuid=str(surface_uuid))

    tmp_dir = Path(f"tmp_dir/{uuid.uuid4()}")
    tmp_dir.mkdir(parents=True, exist_ok=True)
    epc_file = f"{tmp_dir}/wrapper.epc"
    model = new_model(epc_file=epc_file)
    model.copy_uuid_from_other_model(Model(grid_epc), uuid=str(grid_uuid))
    model.copy_uuid_from_other_model(surface.model, uuid=str(surface_uuid))

    grid = RegularGrid(parent_model=model, uuid=str(grid_uuid))

    uuid_list = []
    uuid_list.extend([grid_uuid, surface_uuid])

    print("About to call function")

    returns = rqgs.find_faces_to_represent_surface_regular_optimised(
        grid,
        surface,
        name,
        title,
        centres,
        agitate,
        feature_type,
        progress_fn,
        consistent_side,
        return_properties,
    )

    print("Function returned")
    if return_properties is not None:
        gcs = returns[0]
        properties = returns[1]
        realisation = index if use_index_as_realisation else None
        property_collection = PropertyCollection(support=gcs)
        for name, array in properties.items():
            if name == "normal vector":
                property_collection.add_cached_array_to_imported_list(
                    array,
                    "from find_faces function",
                    name,
                    discrete=False,
                    uom="Euc",
                    property_kind="continuous",
                    realization=realisation,
                    indexable_element="faces",
                    points=True,
                )
            elif name == "triangle":
                property_collection.add_cached_array_to_imported_list(
                    array,
                    "from find_faces function",
                    name,
                    discrete=True,
                    null_value=-1,
                    property_kind="discrete",
                    realization=realisation,
                    indexable_element="faces",
                )
            elif name == "offset":
                property_collection.add_cached_array_to_imported_list(
                    array,
                    "from find_faces function",
                    name,
                    discrete=False,
                    uom=grid.crs.z_units,
                    property_kind="continuous",
                    realization=realisation,
                    indexable_element="faces",
                )
        property_collection.write_hdf5_for_imported_list()
        uuids_properties = (
            property_collection.
            create_xml_for_imported_list_and_add_parts_to_model())
        uuid_list.extend(uuids_properties)
    else:
        gcs = returns

    success = False
    if gcs.count > 0:
        success = True

    gcs.write_hdf5()
    gcs.create_xml()
    model.copy_uuid_from_other_model(gcs.model, uuid=gcs.uuid)
    uuid_list.append(gcs.uuid)

    model.store_epc()

    return index, success, epc_file, uuid_list
Ejemplo n.º 18
0
def test_from_dataframe_and_dataframe(example_model_and_crs):
    # Test that a WellboreMarkerFrame object can be correctly instantiated from a source dataframe and verify that the
    # dataframe generated by the dataframe() method matches the source dataframe

    # --------- Arrange ----------
    # Create a WellboreMarkerFrame object in memory
    # Load example model from a fixture
    model, crs = example_model_and_crs
    epc_path = model.epc_file

    # Create a trajectory
    well_name = 'Banoffee'
    elevation = 100
    datum = resqpy.well.MdDatum(parent_model=model,
                                crs_uuid=crs.uuid,
                                location=(0, 0, -elevation),
                                md_reference='kelly bushing')
    mds = np.array([300.0, 310.0, 330.0])
    zs = mds - elevation
    source_dataframe = pd.DataFrame({
        'MD': mds,
        'X': [150.0, 165.0, 180.0],
        'Y': [240.0, 260.0, 290.0],
        'Z': zs,
    })
    trajectory = resqpy.well.Trajectory(parent_model=model,
                                        data_frame=source_dataframe,
                                        well_name=well_name,
                                        md_datum=datum,
                                        length_uom='m')
    trajectory.write_hdf5()
    trajectory.create_xml()
    trajectory_uuid = trajectory.uuid

    # Create features and interpretations
    horizon_feature_1 = rqo.GeneticBoundaryFeature(
        parent_model=model, kind='horizon', feature_name='horizon_feature_1')
    horizon_feature_1.create_xml()
    horizon_interp_1 = rqo.HorizonInterpretation(
        parent_model=model,
        title='horizon_interp_1',
        genetic_boundary_feature=horizon_feature_1,
        sequence_stratigraphy_surface='flooding',
        boundary_relation_list=['conformable'])
    horizon_interp_1.create_xml()

    woc_feature_1 = rqo.FluidBoundaryFeature(parent_model=model,
                                             kind='water oil contact',
                                             feature_name='woc_1')
    # fluid boundary feature does not have an associated interpretation
    woc_feature_1.create_xml()

    fault_feature_1 = rqo.TectonicBoundaryFeature(
        parent_model=model, kind='fault', feature_name='fault_feature_1')
    fault_feature_1.create_xml()
    fault_interp_1 = rqo.FaultInterpretation(
        parent_model=model,
        title='fault_interp_1',
        tectonic_boundary_feature=fault_feature_1,
        is_normal=True,
        maximum_throw=15)
    fault_interp_1.create_xml()

    df = pd.DataFrame({
        'MD': [400.0, 410.0, 430.0],
        'Boundary_Feature_Type': ['horizon', 'water oil contact', 'fault'],
        'Marker_Citation_Title':
        ['marker_horizon_1', 'marker_woc_1', 'marker_fault_1'],
        'Interp_Citation_Title': ['horizon_interp_1', None, 'fault_interp_1'],
    })

    # Create a wellbore marker frame from a dataframe
    wellbore_marker_frame = resqpy.well.WellboreMarkerFrame.from_dataframe(
        parent_model=model,
        dataframe=df,
        trajectory_uuid=trajectory_uuid,
        title='WBF1',
        originator='Human',
        extra_metadata={'target_reservoir': 'treacle'})
    # --------- Act ----------
    # Save to disk
    wellbore_marker_frame.write_hdf5()
    wellbore_marker_frame.create_xml()
    wmf_uuid = wellbore_marker_frame.uuid  # called after create_xml method as it can alter the uuid
    # get the uuids of each of the markers
    marker_uuids = []
    for marker in wellbore_marker_frame.marker_list:
        marker_uuids.append(marker.uuid)
    model.store_epc()
    model.h5_release()

    # Clear memory
    del model, wellbore_marker_frame, datum, trajectory

    # Reload from disk
    model2 = Model(epc_file=epc_path)
    wellbore_marker_frame2 = resqpy.well.WellboreMarkerFrame(
        parent_model=model2, uuid=wmf_uuid)

    # Get the uuids of each of the markers
    marker_uuids2 = []
    for marker in wellbore_marker_frame2.marker_list:
        marker_uuids2.append(marker.uuid)

    # Create a dataframe from the attributes of the new wellbore marker frame object
    df2 = wellbore_marker_frame2.dataframe()
    df2_filtered_cols = df2[[
        'MD', 'Boundary_Feature_Type', 'Marker_Citation_Title',
        'Interp_Citation_Title'
    ]]

    # --------- Assert ----------
    # test that the attributes were reloaded correctly
    assert bu.matching_uuids(wellbore_marker_frame2.trajectory_uuid,
                             trajectory_uuid)
    assert wellbore_marker_frame2.node_count == len(
        wellbore_marker_frame2.node_mds) == len(
            wellbore_marker_frame2.marker_list) == 3
    assert wellbore_marker_frame2.title == 'WBF1'
    assert wellbore_marker_frame2.originator == 'Human'
    assert wellbore_marker_frame2.extra_metadata == {
        'target_reservoir': 'treacle'
    }
    np.testing.assert_almost_equal(wellbore_marker_frame2.node_mds,
                                   np.array([400.0, 410.0, 430.0]))
    for uuid1, uuid2 in zip(marker_uuids, marker_uuids2):
        assert bu.matching_uuids(uuid1, uuid2)
    # test that the generated dataframe contains the same data as the original df
    pd.testing.assert_frame_equal(df, df2_filtered_cols, check_dtype=False)
Ejemplo n.º 19
0
def function_multiprocessing(
    function: Callable,
    kwargs_list: List[Dict[str, Any]],
    recombined_epc: Union[Path, str],
    cluster,
    consolidate: bool = True,
) -> List[bool]:
    """Calls a function concurrently with the specfied arguments.

    A multiprocessing pool is used to call the function multiple times in parallel. Once
    all results are returned, they are combined into a single epc file.

    Args:
        function (Callable): the function to be called. Needs to return:

            - index (int): the index of the kwargs in the kwargs_list.
            - success (bool): whether the function call was successful, whatever that
                definiton is.
            - epc_file (Path/str): the epc file path where the objects are stored.
            - uuid_list (List[str]): list of UUIDs of relevant objects.

        kwargs_list (List[Dict[Any]]): A list of keyword argument dictionaries that are
            used when calling the function.
        recombined_epc (Path/str): A pathlib Path or path string of
            where the combined epc will be saved.
        cluster (LocalCluster/JobQueueCluster): a LocalCluster is a Dask cluster on a
            local machine. If using a job queing system, a JobQueueCluster can be used
            such as an SGECluster, SLURMCluster, PBSCluster, LSFCluster etc.
        consolidate (bool): if True and an equivalent part already exists in
            a model, it is not duplicated and the uuids are noted as equivalent.

    Returns:
        success_list (List[bool]): A boolean list of successful function calls.

    Note:
        This function uses the Dask backend to run the given function in parallel, so a
        Dask cluster must be setup and passed as an argument. Dask will need to be
        installed in the Python environment because it is not a dependency of the
        project. More info can be found at https://docs.dask.org/en/latest/deploying.html
    """
    log.info("Multiprocessing function called with %s function.", function.__name__)

    for i, kwargs in enumerate(kwargs_list):
        kwargs["index"] = i

    with parallel_backend("dask"):
        results = Parallel()(delayed(function)(**kwargs) for kwargs in kwargs_list)

    log.info("Function calls complete.")

    # Sorting the results by the original kwargs_list index.
    results = list(sorted(results, key = lambda x: x[0]))

    success_list = [result[1] for result in results]
    epc_list = [result[2] for result in results]
    uuids_list = [result[3] for result in results]
    log.info("Number of successes: %s/%s.", sum(success_list), len(results))

    epc_file = Path(str(recombined_epc))
    if epc_file.is_file():
        model_recombined = Model(epc_file = str(epc_file))
    else:
        model_recombined = new_model(epc_file = str(epc_file))

    log.info("Creating the recombined epc file.")
    for i, epc in enumerate(epc_list):
        if epc is None:
            continue
        while True:
            try:
                model = Model(epc_file = epc)
                break
            except FileNotFoundError:
                time.sleep(1)
                continue
        uuids = uuids_list[i]
        if uuids is None:
            uuids = model.uuids()
        for uuid in uuids:
            model_recombined.copy_uuid_from_other_model(model, uuid = uuid, consolidate = consolidate)

    # Deleting temporary directory.
    log.info("Deleting the temporary directory")
    rm_tree("tmp_dir")

    model_recombined.store_epc()

    log.info("Recombined epc file complete.")

    return success_list
Ejemplo n.º 20
0
def test_DeviationSurvey(example_model_with_well, tmp_path):
    # Test that all attributes are correctly saved and loaded from disk

    # --------- Arrange ----------
    # Create a Deviation Survey object in memory

    # Load example model from a fixture
    model, well_interp, datum, traj = example_model_with_well
    epc_path = model.epc_file

    # Create 3 copies of the survey, using different initialisers
    data = dict(
        title = 'Majestic Umlaut ö',
        originator = 'Thor, god of sparkles',
        md_uom = 'ft',
        angle_uom = 'rad',
        is_final = True,
    )
    array_data = dict(
        measured_depths = np.array([1, 2, 3], dtype = float) + 1000.0,
        azimuths = np.array([4, 5, 6], dtype = float),
        inclinations = np.array([1, 2, 3], dtype = float),
        first_station = np.array([0, -1, 999], dtype = float),
    )

    survey = resqpy.well.DeviationSurvey(
        parent_model = model,
        represented_interp = well_interp,
        md_datum = datum,
        **data,
        **array_data,
    )
    survey_uuid = survey.uuid

    df = pd.DataFrame(columns = ['MD', 'AZIM_GN', 'INCL', 'X', 'Y', 'Z'])
    for col, key in zip(('MD', 'AZIM_GN', 'INCL'), ('measured_depths', 'azimuths', 'inclinations')):
        df[col] = array_data[key]
    for axis, col in enumerate(('X', 'Y', 'Z')):
        df[col] = np.NaN
        df.loc[0, col] = array_data['first_station'][axis]

    survey_b = resqpy.well.DeviationSurvey.from_data_frame(parent_model = model,
                                                           data_frame = df,
                                                           md_datum = datum,
                                                           md_uom = data['md_uom'],
                                                           angle_uom = data['angle_uom'])
    survey_b_uuid = survey_b.uuid

    csv_file = os.path.join(tmp_path, 'survey_c.csv')
    df.to_csv(csv_file)

    survey_c = resqpy.well.DeviationSurvey.from_ascii_file(parent_model = model,
                                                           deviation_survey_file = csv_file,
                                                           md_datum = datum,
                                                           md_uom = data['md_uom'],
                                                           angle_uom = data['angle_uom'])
    survey_c_uuid = survey_c.uuid

    # ----------- Act ---------

    # Save to disk
    for s in (survey, survey_b, survey_c):
        s.write_hdf5()
        s.create_xml()
    model.store_epc()
    model.h5_release()

    # Clear memory
    del model, well_interp, datum, traj, survey, survey_b, survey_c

    # Reload from disk
    model2 = Model(epc_file = epc_path)
    survey2 = resqpy.well.DeviationSurvey(model2, uuid = survey_uuid)
    survey_b2 = resqpy.well.DeviationSurvey(model2, uuid = survey_b_uuid)
    survey_c2 = resqpy.well.DeviationSurvey(model2, uuid = survey_c_uuid)

    # --------- Assert --------------
    # Check all attributes were loaded from disk correctly

    for key, expected_value in data.items():
        assert getattr(survey2, key) == expected_value, f"Error for {key}"
        if 'uom' in key:
            for s in (survey_b2, survey_c2):
                assert getattr(s, key) == expected_value, f"Error for {key}"

    for s in (survey2, survey_b2, survey_c2):
        for key, expected_value in array_data.items():
            assert_array_almost_equal(getattr(s, key), expected_value, err_msg = f"Error for {key}")
        assert s.station_count == len(array_data['azimuths'])
Ejemplo n.º 21
0
class ModelContext:
    """Context manager for easy opening and closing of resqpy models.

    When a model is opened this way, any open file handles are safely closed
    when the "with" clause exits. Optionally, the epc can be written back to
    disk upon exit.

    Example::

        with ModelContext("my_model.epc", mode="rw") as model:
            print(model.uuids())

    Note:
        The "write_hdf5" and "create_xml" methods of individual resqpy objects
        still need to be invoked as usual.
    """
    def __init__(self, epc_file, mode="r") -> None:
        """Open a resqml file, safely closing file handles upon exit.

        The modes operate as follows:

        - In "read" mode, an existing epc file is opened. Any changes are not
        saved to disk automatically, but can still be saved by calling
        `model.store_epc()`.
        - In "read/write" mode, changes are written to disk when the context exists.
        - In "create" mode, a new model is created and saved upon exit. Any existing
            model will be deleted.

        Args:
            epc_file (str): path to existing resqml file
            mode (str): one of "read", "read/write", "create", or shorthands
            "r", "rw", "c".
        """

        # Validate mode
        modes_mapping = {"r": "read", "rw": "read/write", "c": "create"}
        mode = modes_mapping.get(mode, mode)
        if mode not in modes_mapping.values():
            raise ValueError(f"Unexpected mode '{mode}'")

        self.epc_file = epc_file
        self.mode = mode
        self._model: Optional[Model] = None

    def __enter__(self) -> Model:
        """Enter the runtime context, return a model."""

        if self.mode in ["read", "read/write"]:
            if not os.path.exists(self.epc_file):
                raise FileNotFoundError(self.epc_file)
            self._model = Model(epc_file=str(self.epc_file))

        else:
            assert self.mode == "create"
            for file in [self.epc_file, self.epc_file[:-4] + '.h5']:
                if os.path.exists(file):
                    os.remove(file)
                    log.info('old file deleted: ' + str(file))
            self._model = new_model(self.epc_file)

        return self._model

    def __exit__(self, exc_type, exc_value, exc_tb):
        """Exit the runtime context, close the model."""

        # Only write to disk if no exception has occured
        if self.mode in ["read/write", "create"] and exc_type is None:
            self._model.store_epc()

        # Release file handles
        self._model.h5_release()