def main(): easy_dices = [ './images/easy/dice1.jpg', './images/easy/dice2.jpg', './images/easy/dice3.jpg', './images/easy/dice4.jpg', './images/easy/dice5.jpg', './images/easy/dice6.jpg', './images/easy/dice7.jpg', './images/easy/dice8.jpg', './images/easy/dice9.jpg', './images/easy/dice10.jpg' ] medium_dices = [ './images/medium/dice1.jpg', './images/medium/dice2.jpg', './images/medium/dice3.jpg', './images/medium/dice4.jpg', './images/medium/dice5.jpg', './images/medium/dice6.jpg', './images/medium/dice7.jpg', './images/medium/dice8.jpg', './images/medium/dice9.jpg', './images/medium/dice10.jpg' ] hard_dices = [ './images/hard/dice1.jpg', './images/hard/dice2.jpg', './images/hard/dice3.jpg', './images/hard/dice4.jpg', './images/hard/dice5.jpg', './images/hard/dice6.jpg', './images/hard/dice7.jpg', './images/hard/dice8.jpg', './images/hard/dice9.jpg', './images/hard/dice10.jpg' ] pictures = [] for easy_dice, medium_dice, hard_dice in zip(easy_dices, medium_dices, hard_dices): pictures.append(Picture(easy_dice)) pictures.append(Picture(medium_dice)) pictures.append(Picture(hard_dice)) for picture in pictures: picture.process_picture() result(result)
def test_max(): expr = max(map(partition(goals, 'team'), len)) home = randint(0, 3) away = randint(0, 3) state = gen_state(home, away) expected = {-1: {'away'}, 0: {'home', 'away'}, 1: {'home'}} assert result(expr, state) == expected[cmp(home, away)]
def test_attr(): expr = attr(nth(goals, 0), 'team') home = randint(0, 1) away = randint(0, 1 - home) state = gen_state(home, away) expected = {(0, 0): None, (1, 0): 'home', (0, 1): 'away'} assert result(expr, state) == expected[(home, away)]
def post(): # get post data json_data = request.get_json() try: # input check by ma.Schema json_check = user_schema.load(json_data) # get json of server response result_json = result.result(200, "ping successful")[0].get_json() # logging post data result.write_log('info', "data: {}".format(json_data)) except: return result.result(400, "please check your parameters") result_json['data'] = json_check return jsonify(result_json)
def calculate_time(out): # print(transform_hex_data(out[4]) << 8) # print(transform_hex_data(out[5])) sport_time = (transform_hex_data(out[4]) << 8) + transform_hex_data(out[5]) real_time = sport_time / 100 result_bean = result.result(transform_hex_data(out[1]), real_time) # print(result_bean.to_string()) return result_bean
def addResult(self, algoId, results, centerIds, timeConsumed): for centerId in range(len(centerIds)): if centerIds[centerId][0] == -1: assert centerIds[centerId][1] == -1 centerIds = resize(centerIds, (centerId + 1, 2)) break results.append( result(algoId, self.points, self.calcMinRadius(centerIds), centerIds, timeConsumed))
def simulate(match): alldata = list() teams = getteamsplaying(match) team1, team2 = teams[0], teams[2] print "Teams:", team1, team2 t1p, t2p = teams[1], teams[3] if teams[5][0] != 'Tba': maps = list(teams[5]) print "Maps: ", maps else: #Predict Maps maps = predict_map(team1, team2, teams[4]) print "Predicted maps: ", maps for i in maps: stats = simulation(getstats(t1p, t2p, i)) print i, stats alldata.append(stats) result(alldata)
def image(): json_data = request.get_json() try: image_url = json_data['image'] local_image_filename = wget.download(image_url) find_image_dict = find_image(test_model, local_image_filename) # get json of server response result_json = result.result(200, "ping successful")[0].get_json() # logging post data result.write_log('info', "data: {}".format(find_image_dict)) if os.path.exists(local_image_filename): os.remove(local_image_filename) except: return result.result(400, "please check your parameters") result_json['data'] = find_image_dict return jsonify(result_json)
def searchLucene(requestParameter): "this method is used to search Lucene" searchResults = [] requestParameter = requestParameter.replace("/"," ") # 1. open the index if __name__ == "luceneSearch": lucene.initVM() analyzer = StandardAnalyzer(Version.LUCENE_4_10_1) index = SimpleFSDirectory(File("Home/WishMatcherIndex")) reader = IndexReader.open(index) n_docs = reader.numDocs() print("Index contains %d documents." % n_docs) # 2. parse the query from the command line fields=["AdLine","FieldString","FieldRelatedWords"] parser = MultiFieldQueryParser(Version.LUCENE_CURRENT, fields, analyzer) parser.setDefaultOperator(QueryParserBase.OR_OPERATOR) query = MultiFieldQueryParser.parse(parser,requestParameter) print(query) # 3. search the index for the query # We retrieve and sort all documents that match the query. # In a real application, use a TopScoreDocCollector to sort the hits. searcher = IndexSearcher(reader) hits = searcher.search(query, n_docs).scoreDocs # 4. display results print("Found %d hits:" % len(hits)) for i, hit in enumerate(hits): doc = searcher.doc(hit.doc) product = doc.get("AdLine") url = doc.get("URL") if(doc.get("AdId") != 1200): product = product[:-1] url = url[:-1] print("%d. %s" % (i + 1, doc.get("AdLine"))) r = result(str(product),str(url)) searchResults.append(r) # 5. close resources #searcher.close() print(searchResults) return searchResults
from result import result print result('./testCases/main.txt')
structure_1 = structure_1.transpose() structure_2 = structure_2.transpose() opening_bracket_fs = structure_1[0:1, ] closing_bracket_fs = structure_1[1:2, ] length_first = structure_1[2:3, ] opening_bracket_ss = structure_2[0:1, ] closing_bracket_ss = structure_2[1:2, ] length_second = structure_2[2:3, ] wp = 1 wd = 1 sl = 1 opening_bracket_fs = np.array(opening_bracket_fs) closing_bracket_fs = np.array(closing_bracket_fs) opening_bracket_ss = np.array(opening_bracket_ss) closing_bracket_ss = np.array(closing_bracket_ss) length_first = np.array(length_first) length_second = np.array(length_second) allignment = [] allignment = np.array(allignment) allignment = allignComponents(opening_bracket_fs, closing_bracket_fs, opening_bracket_ss, closing_bracket_ss, wp, wd, sl, no_inter_first, no_inter_second, length_first, length_second) print("Allignement Similarity between two structure :\n", allignment) result(allignment, no_inter_first, no_inter_second)
y, x = prepareData(pf, s) dimensione = len(x) / 100 * dim prob = svm_problem(y[:dimensione], x[:dimensione]) x = x[dimensione:] y = y[dimensione:] for classificazione in classificazioni: print "---- ---- --> inizio ciclo su classificazione : ", classificazione for k in kernel: if k == ' -t 2': print "\n---- ---- ----> inizio ciclo su kernel : ", k else: print "---- ---- ----> inizio ciclo su kernel : ", k r = result(classificazione, k, s, dim, pf, prob, x, y) if k == ' -t 2': print "" results.append(r) if len(results) % 500 == 0: pickle.dump( results, open("DatiElaborati/result" + str(count) + "_utili", "wb")) print "" print "---- ---- ----> salvataggio <---- ---- ---- ", len( results) print "" count += 1 results = []
input( "Abracadabra, which number is in my mind? Tell me number between " + str(game.fromNum) + " and " + str(game.toNum) + ": ")) numGuess = numGuess + 1 if UserGuess < game.fromNum or UserGuess > game.toNum: raise ValueError elif int(UserGuess) == game.secret: print("Uh wow! That is absolutly correct. Congrats my dear!") break else: wrongGuesses = wrongGuesses + 1 print("Nope! Far, far away! That is not my number!") except ValueError: print("Oops! That was no valid number. Try again...") newGame = result(score=numGuess, player_name=player, date=str(game.today)) #Define variable für JSON File listContent = {} listContent['games'] = [] #Open and read JSON File def get_score_list(): with open(filename) as json_file: listContent = json.load(json_file) return listContent listContent = get_score_list()
def method_404(e): return result.result(404, "requested URL was not found on the server")
def upload(): file = dm.getfile("Select apparel image") if (file == ''): return return rs.result(file)
process.wait() output = process.stdout.readlines() start = False #stdoutput = process.communicate() for line in output: if(line[0] == '|'): continue elif(start == True): if(line[0] >= '0' and line[0] <= '9'): parts = line.split(' ') length = len(parts) detail = '' for i in range(1,length): detail += parts[i] + ' ' result.portservice[parts[0]] = detail else: start = False elif(line.startswith('PORT')): start = True continue elif(line.startswith('OS details')): parts = line.split(':') result.operatingsystem = parts[1] #print stdoutput t = result.result() nmap("10.0.0.55", t) print t.operatingsystem for key in t.portservice.keys(): print key + ':' + t.portservice[key]
#!/usr/bin/env python # coding=utf-8 import result import numpy as np threshold = np.arange(1600, 2800, 2) result.result(threshold, "conv3")
def ping(): return result.result(200, "ping successful", "Welcome to restful api server.")
def main_black(T=60,server='localhost'): # white positive free_winpath_white=2 #king can go in a position in which could win kill_black=1.9 protection_king=2 #white protecting the king from being killed pass_kill= 0.1 #white negative checker_in_escape=0.5 dangerous_neig_white=0.5 white_obstructing=1 white_not_protecting=1.9 killed = 1.8 #king positive: h_w_win=0 free_winpath_king=2 #re si porta in posizione vittoria grazie al suo movimento king_kills_black=1.8 pass_kill_king=0.1 #king negative dangerous_neig_king=0.5 killed_king = 0 #black: h_black_win=500 #black heuristic black_win = 1000 black_loose = 1000 black_checker_death=5 white_checker_death=4 strategic_position=3 move_strategic_position=2 black_near_king=4 Tablut_dict={'EMPTY':0,'BLACK':'B','WHITE':'W','KING':'K','THRONE':0} l1=['a','b','c','d','e','f','g','h','i'] l2=['1','2','3','4','5','6','7','8','9'] l3=[] for i in l1: for j in l2: l3.append(i+j) Board_dict={} ind=0 for i in range(9): for j in range(9): Board_dict[str([j,i])]=l3[ind] ind+=1 escape_value=11 castle_value=50 empty_camps_value = 98 full_camps_value = 99 white_value=10 black_value=1 king_value=8 Tablut_connection = C1.Player(1,'barbarians',server) sys.setrecursionlimit(10000) while True: try : board=Tablut_connection.read() board = board.decode() board = json.loads(board) turn = board['turn'] board=board['board'] board_java=np.array(board) king_indexes = list(zip(*np.where(board_java == 'KING'))) ik = king_indexes[0][0] jk = king_indexes[0][1] # king indexes if turn == 'BLACK': for i in range(9): for j in range(9): board[i][j]=Tablut_dict[board[i][j]] indices = [[i, x] for i in range(9) for x in range(9) if board[i][x] == 'B'] illegal_moves = [[0, 3], [0, 4], [0, 5], [1, 4], [8, 3], [8, 4], [8, 5], [7, 4], [3, 0], [4, 0], [5, 0], [4, 1], [3, 8], [4, 8], [5, 8], [4, 7],[4,4]] moves = [] for j in indices: board_conv = bl.convert_board(copy.deepcopy(board), illegal_moves, j) moves = act.black_checker_actions(board_conv, j, moves, copy.deepcopy(illegal_moves)) random.shuffle(moves) h_max = -1000000 move = [] for action in moves: new_board = bl.move_on_board(board, action) h_b = heu.utility(new_board,action[0], action[1][0], action[1][1], illegal_moves,black_win, black_loose,black_checker_death,white_checker_death,strategic_position,move_strategic_position,black_near_king) #print(h_b, sep=' ', end='', flush=True) M, M_tiles, M_converted = create_M(board_java) #action=np.array(action) M,M_converted=result(M,M_converted,king_indexes,black_value,white_value,castle_value,empty_camps_value, full_camps_value, king_value, action, turn='BLACK') M=np.array(M) white_positions = list(zip(*np.where(M == white_value))) list_actions_white = [] for indexes in white_positions: list_actions_white += actions_white(M, indexes[0], indexes[1], 9, 9) king_actions = actions_king(M, ik, jk, 9, 9, escape_value) list_actions_white = np.array(list_actions_white) h_w_max = -10000 # random.shuffle(list_actions) # shuffle method maybe is not going to contain all the actions, but some repeated?? pass_kill_king, killed_king = 0.1, 1000 pass_kill, killed = 0.1, 4.5 for action_king in king_actions: action_king = np.array(action_king) M_result, M_converted_result = apply_action(M, M_converted, action_king) # the Matrix given in output from apply action has still the checkers to be eliminated if killed i = action_king[0, 0] j = action_king[0, 1] ik_result = action_king[1, 0] jk_result = action_king[1, 1] h_w = heuristic_king(M_result, M_tiles, ik_result, jk_result, pass_kill_king, killed_king,h_w_win, free_winpath_king, dangerous_neig_king, king_kills_black, escape_value, castle_value, empty_camps_value, full_camps_value, white_value, black_value, king_value ) if h_w > h_w_max: h_w_max = h_w for white_action in list_actions_white: M_result, M_converted = apply_action(M, M_converted, white_action) h_w = heuristic_white(M_result,M_tiles, white_action, ik, jk, pass_kill_king, killed_king, pass_kill, killed, free_winpath_white, white_obstructing, checker_in_escape, dangerous_neig_white, kill_black, protection_king, white_not_protecting, escape_value, castle_value, empty_camps_value, full_camps_value, white_value, black_value, king_value) if h_w >= h_w_max: h_w_max = h_w h= h_b - h_w_max if h > h_max: h_max = h move = action #print('actions', moves) #print('choosen', h_max) #print(np.array(board)) #print(move) #print("{'from':"+Board_dict[str(move[0])]+",'to':"+Board_dict[str(move[1])]+",'turn':'BLACK'}") Tablut_connection.send("{'from':"+Board_dict[str(move[0])]+",'to':"+Board_dict[str(move[1])]+",'turn':'BLACK'}") except SyntaxError: pass
def test_len(): expr = len(goals) home = randint(0, 3) away = randint(0, 3) state = gen_state(home, away) assert result(expr, state) == home + away
def upload(screen): file = dm.getfile("Select a shoe image") fade(screen, 360, 640) load.loading() fade(screen, 360, 640) return rs.result(file)
def execute_all(self, task, storage=None): """ execute all parametrizations as defined in task object Parameters ---------- task -- the task which is broken down into the individual execution points storage -- if set to a string, will store the result in that path as JSON. If set to a file, will use that. Returns ------- results -- the results of the computation in a list of result objects. """ instruction = task._task_type #print "running a total number of points of", task.get_total_points() setters = {} if instruction == bt.RUN_FG: class_n = task.class_name time.sleep(1) module_n = str(task.module_name) module = __import__(module_n, fromlist=[str(class_n)]) self.block_class = getattr(module, task.class_name) elif instruction == bt.RUN_GRC: if not hasattr(self, "temp_outdir"): self.temp_outdir = tempfile.mkdtemp(suffix="_py", prefix="gr-mtb-") temp_grc_file = tempfile.NamedTemporaryFile(suffix=".grc", delete=False, dir=self.temp_outdir) temp_grc_file.write(task.grcxml) temp_grc_file.close() platform = Platform() data = platform.parse_flow_graph(temp_grc_file.name) fg = platform.get_new_flow_graph() fg.import_data(data) fg.grc_file_path = os.path.abspath(temp_grc_file.name) fg.validate() if not fg.is_valid(): raise StandardError("Compilation error") class_n = fg.get_option("id") filepath = os.path.join(self.temp_outdir, class_n + ".py") gen = platform.get_generator()(fg, filepath) gen.write() module = imp.load_source(class_n, filepath) self.block_class = getattr(module, class_n) results = [] print "processing {:d} points".format(task.get_total_points()) for inst, values in self.parameterize(task, self.block_class): datadict = self._execute(inst, task.sinks) results.append(result(values, datadict)) try: if storage and not hasattr(storage, "write"): outfile = open(str(storage), 'w') json.dump([r.to_dict() for r in results], outfile) outfile.close() elif storage: json.dump([r.to_dict() for r in results], storage) except IOError as e: print e return results
def main(): print "# KNN Classifier" parser = ld.parse_arguments() stopwords = None if parser.stopwords_path: stopwords = ld.load_stopwords(parser.stopwords_path) # priting args print '\t-k = ' + str(parser.k) print '\t-d = ' + parser.distance # loading the necessary data (vocabulary, neigh_classes) = ld.load_train(parser.train_path, stopwords) print "# Tamanho do vocabulário:", len(vocabulary) # transforming each item to a v-dimensional space (train, test) = space.transform(vocabulary, parser.train_path, parser.test_path) # output file out_path = parser.distance + '_' + str(parser.k) out_path += '.txt' out_file = open(out_path, 'w') # knn classification print "# Classifying", len(train) * parser.percentage for item in test: dist_heap = [] # calculates the distance to every point in the training set for i in xrange(int(len(train) * parser.percentage)): point = train[i] distance = 0.0 if parser.distance == 'cosine': distance = spd.cosine(item, point) elif parser.distance == 'jaccard': distance = spd.jaccard(item, point) elif parser.distance == 'euclidean': distance = spd.euclidean(item, point) elif parser.distance == 'hamming': distance = spd.hamming(item, point) elif parser.distance == 'correlation': distance = spd.correlation(item, point) elif parser.distance == 'manhattan': distance = spd.cityblock(item, point) else: print >> stderr, "ERRO! - Distância informada inválida." exit() tup = (distance, i) heapq.heappush(dist_heap, tup) # return the highest k similar points top_k = heapq.nsmallest(parser.k, dist_heap) # classifing classification = np.zeros(2) for (_, idi) in top_k: classe = neigh_classes[idi] classification[int(classe)] += 1 # DEBUG print classification, # outputing classification if(classification[0] >= classification[1]): print >> out_file, '0' print '0' else: print >> out_file, '1' print '1' print print "# Resultados salvos no arquivo: " + out_path out_file.close() result.result("../data/imdb_test", out_path)
#!/usr/bin/env python # coding=utf-8 import result import numpy as np D_array = np.linspace(0.344344049692, 1.35239160061, 500) result.result(D_array, "pool1") D_array = np.linspace(0.374729394913, 1.34376788139, 500) result.result(D_array, "conv2") D_array = np.linspace(0.301110446453, 1.29882144928, 500) result.result(D_array, "pool2") D_array = np.linspace(0.311531066895, 1.29718482494, 500) result.result(D_array, "conv3") D_array = np.linspace(0.301401376724, 1.32344532013, 500) result.result(D_array, "conv4") D_array = np.linspace(0.353400379419, 1.40551733971, 500) result.result(D_array, "conv5") D_array = np.linspace(0.300964653492, 1.38409125805, 500) result.result(D_array, "pool5") D_array = np.linspace(0.274265795946, 1.40312755108, 500) result.result(D_array, "fc6") D_array = np.linspace(0.172954037786, 1.38578188419, 500) result.result(D_array, "fc7")
from simulation import game from snake_ladder import Snakes from result import result pecurialsnakes = [[68, 58], [60, 50], [51, 41], [26, 16], [90, 80], [82, 72], [15, 5], [24, 14], [22, 12], [64, 54], [20, 10], [59, 49], [19, 9], [45, 35], [21, 11], [52, 42], [46, 36], [23, 13], [76, 66], [57, 47], [39, 29]] aveg = [] for x in range(2, 101): countlist = [] snake = Snakes(0, 0) sim = game(x, snake.snakes_ladders) for i in range(0, 100000): countlist.append(sim.gamesimulation()) re = result(countlist) print(re.results()) aveg.append(re.results()) with open("D:\\maths\\thesis\\algo_thesis\\results\simulation2_100.txt", "a") as fp: for f in aveg: fp.write(str(f) + "\n")
#!/usr/bin/env python # coding=utf-8 import result import numpy as np D_array=np.linspace(0.344344049692,1.35239160061,500) result.result(D_array,"pool1") D_array=np.linspace(0.374729394913,1.34376788139,500) result.result(D_array,"conv2") D_array=np.linspace(0.301110446453,1.29882144928,500) result.result(D_array,"pool2") D_array=np.linspace(0.311531066895,1.29718482494,500) result.result(D_array,"conv3") D_array=np.linspace(0.301401376724,1.32344532013,500) result.result(D_array,"conv4") D_array=np.linspace(0.353400379419,1.40551733971,500) result.result(D_array,"conv5") D_array=np.linspace(0.300964653492,1.38409125805,500) result.result(D_array,"pool5") D_array=np.linspace(0.274265795946,1.40312755108,500) result.result(D_array,"fc6") D_array=np.linspace(0.172954037786,1.38578188419,500) result.result(D_array,"fc7")
def main(): print "# KNN Classifier" parser = ld.parse_arguments() # priting args print '\t-k = ' + str(parser.k) print '\t-d = ' + parser.distance stopwords = None if parser.stopwords_path: stopwords = ld.load_stopwords(parser.stopwords_path) voc = load_vocabulary(parser.train_path, stopwords) answers = load_answers(parser.train_path) train = transform(voc, parser.train_path) test = transform(voc, parser.test_path) # output file out_path = '../results/' + parser.distance + '_' + str(parser.k) out_path += '.txt' out_file = open(out_path, 'w') for point in test: neighbors = [] for i in xrange(len(train)): neigh = train[i] distance = 0.0 if parser.distance == 'cosine': distance = spd.cosine(neigh, point) elif parser.distance == 'jaccard': distance = spd.jaccard(neigh, point) elif parser.distance == 'euclidean': distance = spd.euclidean(neigh, point) elif parser.distance == 'dice': distance = spd.dice(neigh, point) elif parser.distance == 'correlation': distance = spd.correlation(neigh, point) elif parser.distance == 'manhattan': distance = spd.cityblock(neigh, point) else: print >> stderr, "ERRO! - Distância informada inválida." exit() tup = (distance, i) heapq.heappush(neighbors, tup) # return the highest k similar points top_k = heapq.nsmallest(parser.k, neighbors) # classifing classification = np.zeros(2) for (_, idi) in top_k: classe = answers[idi] classification[int(classe)] += 1 # outputing classification if(classification[0] >= classification[1]): print >> out_file, '0' print '0' else: print >> out_file, '1' print '1' # outputing the results' print print "# Resultados salvos no arquivo: " + out_path out_file.close() result.result("../data/imdb_test", out_path)
def main_white(T=60,server='localhost'): free_winpath=4 #king can go in a position in which could win kill_black=4 protection_king=10 #white protecting the king from being killed pass_kill= 0.1 #white negative checker_in_escape=0.5 dangerous_neig=0.5 white_obstructing=1 white_not_protecting=4 killed = 4 #king positive: h_w_win=10000 free_winpath=10 king_kills_black=3 pass_kill_king=0.1 #king negative dangerous_neig=0.5 killed_king = 100000 #black positive: black_win = 1000, white_checker_death = 4 strategic_position = 3 black_near_king = 4 #black negative: black_loose = 4 black_checker_death = 5 move_strategic_position = 2 Tablut_dict = {'EMPTY': 0, 'BLACK': 'B', 'WHITE': 'W', 'KING': 'K', 'THRONE': 0} l1 = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] l2 = ['1', '2', '3', '4', '5', '6', '7', '8', '9'] l3 = [] for i in l1: for j in l2: l3.append(i + j) # all possible movements in the java coordinates A1, B1.... Board_dict = {} ind = 0 for i in range(9): for j in range(9): Board_dict[str([j, i])] = l3[ind] # key: A1 value: 00.... (movements) ind += 1 escape_value = 11 castle_value = 50 empty_camps_value = 98 full_camps_value = 99 white_value = 10 black_value = 1 king_value = 8 Tablut_connection = C1.Player(0, 'barbarians',server) # 1=black, 0=white sys.setrecursionlimit(10000) next = True first_move = True while next: #next=input('Wanna see next state?') try: board = Tablut_connection.read() board = board.decode() board = json.loads(board) turn = board['turn'] board = board['board'] # array 2D with labels 'EMPTY','BLACK','WHITE','KING','THRONE' board = np.array(board) out=False #print('NEW STATE:\n', board) king_indexes = list(zip(*np.where(board == 'KING'))) # king indexes ik = king_indexes[0][0] jk = king_indexes[0][1] if turn == 'WHITE': if first_move: move = [[4, 3], [7, 3]] first_move = False else: # tic= time() M, M_tiles, M_converted = create_M(board) #print('current M:\n', M) white_positions = list(zip(*np.where(M == white_value))) list_actions = [] for indexes in white_positions: list_actions += actions_white(M, indexes[0], indexes[1], 9, 9) # each element in the list_actions has this format: [old_index_i,old_index_j],[new_index_i,new_index_j] # which rapresent the movement to do for a checker king_actions = actions_king(M, ik, jk, 9, 9, escape_value) #print('king actions:\n', king_actions) # list_actions += king_actions list_actions = np.array(list_actions) h_max = -10000 list_actions=np.random.permutation(list_actions) king_actions = np.random.permutation(king_actions) for action_king in king_actions: action_king = np.array(action_king) M_action_app_k, M_conv_action_app_k = apply_action(M, M_converted, action_king) # the Matrix given in output from apply action has still the checkers to be eliminated if killed i = action_king[0, 0] j = action_king[0, 1] ik_result = action_king[1, 0] jk_result = action_king[1, 1] h_w = heuristic_king(M_action_app_k, M_tiles, ik_result, jk_result, pass_kill_king, killed_king,h_w_win, free_winpath, dangerous_neig,king_kills_black, escape_value, castle_value, empty_camps_value, full_camps_value, white_value, black_value) if h_w==h_w_win: move=action_king #print('king wins with move:',move) out=True break M_new, M_new_conv = result(M, M_converted, king_indexes, black_value, white_value, castle_value, empty_camps_value, full_camps_value, king_value, action_king, turn) #print('resulting matrix for the action',action_king) #print(M_new) # black : M_black_conv = conv_matrix(M_new_conv) indices = [[i, x] for i in range(9) for x in range(9) if M_black_conv[i][x] == 'B'] illegal_moves = [[0, 3], [0, 4], [0, 5], [1, 4], [8, 3], [8, 4], [8, 5], [7, 4], [3, 0], [4, 0],[5, 0], [4, 1], [3, 8], [4, 8], [5, 8], [4, 7], [4, 4]] list_black_actions = [] for j in indices: board_black = bl.convert_board(copy.deepcopy(M_black_conv), illegal_moves,j) list_black_actions = act.black_checker_actions(board_black.tolist(), j, list_black_actions, copy.deepcopy(illegal_moves)) h_black_max=-100000 for black_action in list_black_actions: new_state = bl.move_on_board(M_black_conv, black_action) h_b = heu.utility(new_state.tolist(), black_action[0], black_action[1][0], black_action[1][1], illegal_moves) #print('heuristic black value for the action',black_action,' : ',h_b) if h_b==black_win: h_black_max=h_b #print('if you do the king action', action_king, ' then the black could do this: ',black_action, 'which has this heuristic: ',h_b) break if h_b > h_black_max: h_black_max = h_b #print('if you do the king action', action_king, ' then the black could do this: ',black_action, 'which has this heuristic: ',h_b) h=h_w - h_black_max if h > h_max: h_max = h move = action_king if not(out): for action in list_actions: #print('action white:', action) M_action_app,M_conv_action_app = apply_action(M, M_converted, action) h_w = heuristic_white(M_action_app,M_tiles, action, ik, jk, pass_kill_king, killed_king, pass_kill, killed, free_winpath,white_obstructing, checker_in_escape,dangerous_neig,kill_black,protection_king,white_not_protecting, escape_value, castle_value, empty_camps_value, full_camps_value, white_value, black_value, king_value) M_new, M_new_conv = result(M, M_converted, king_indexes, black_value, white_value, castle_value, empty_camps_value, full_camps_value, king_value, action, turn) #print('result matrix after applying the action white',action) #print(M_new) M_black_conv = conv_matrix(M_new_conv) indices = [[i, x] for i in range(9) for x in range(9) if M_black_conv[i][x] == 'B'] illegal_moves = [[0, 3], [0, 4], [0, 5], [1, 4], [8, 3], [8, 4], [8, 5], [7, 4], [3, 0], [4, 0], [5, 0], [4, 1], [3, 8], [4, 8], [5, 8], [4, 7], [4, 4]] list_black_actions = [] for j in indices: board_black = bl.convert_board(copy.deepcopy(M_black_conv), illegal_moves,j) list_black_actions = act.black_checker_actions(board_black.tolist(), j, list_black_actions, copy.deepcopy(illegal_moves)) h_black_max=-100000 for black_action in list_black_actions: new_state = bl.move_on_board(board_black, black_action) h_b = heu.utility(M_black_conv.tolist(), black_action[0], black_action[1][0], black_action[1][1], illegal_moves) #print('heuristic black value for the action',black_action,' : ',h_b) if h_b == black_win: h_black_max = h_b #print('if you do the white action', action, ' then the black could do this: ', #black_action, 'which has this heuristic: ',h_b) break if h_b > h_black_max: h_black_max = h_b #print('if you do the white action', action, ' then the black could do this: ', #black_action, 'which has this heuristic: ',h_b) h = h_w - h_black_max if h > h_max: h_max = h move = action move=np.array(move) move = [[move[0,0],move[0,1]],[move[1,0],move[1,1]]] #print('best action:',move) #Mnew, M_conv_new = result(M, M_converted, king_indexes, black_value, white_value, castle_value, #empty_camps_value, #full_camps_value, king_value, move, turn) #print('M_predicted for the white action ',move, '\n',M) #print('M_conv_predicted:','\n',M_conv_new) #print("{'from':" + Board_dict[str(move[0])] + ",'to':" + Board_dict[str(move[1])] + ",'turn':'WHITE'}") Tablut_connection.send("{'from':"+Board_dict[str(move[0])]+",'to':"+Board_dict[str(move[1])]+",'turn':'WHITE'}") # print(time()-tic) #in seconds. #if turn == 'BLACK': # Mnew, M_conv_new = result(M, M_converted, king_indexes, black_value, white_value, castle_value, #empty_camps_value, #full_camps_value, king_value, move, turn) # print('M_predicted for the white action ', move, '\n', M) # print('M_conv_predicted:', '\n', M_conv_new) except SyntaxError: pass #prova.send("{'from':'e2','to':'f2','turn':'BLACK'}") #prova.send("{'from':'e2','to':'f2','turn':'BLACK'}")
def branch(key): linker = key answer = request.form.get("answer") path = request.form.get("path") column = counter.ColumnList[len(counter.ColumnList) - 1] question = counter.QuestionList[len(counter.QuestionList) - 1] del PathList[len(PathList) - 1] PathList.append(int(path)) counter.ListMaker(int(answer), column, question) count = counter.GetCount() if PathList[len(PathList) - 1] == 1 and counter.QuestionList[len(counter.QuestionList) - 1] == counter.QuestionList[0]: return redirect('https://abunatorroute.azurewebsites.net/return/' + linker) elif PathList[len(PathList) - 1] == 1: del counter.SQLList[len(counter.SQLList) - 1] del counter.SQLList[len(counter.SQLList) - 1] del counter.ColumnList[len(counter.ColumnList) - 1] del counter.QuestionList[len(counter.QuestionList) - 1] return render_template('/main.html',\ key = linker,\ question = counter.QuestionList[len(counter.QuestionList)-1]) elif count == 1: resultList = result.result() no = resultList[0] name = resultList[1] dealing = resultList[2] rank = resultList[3] userNo = linker[0:10] result.insert(userNo, name) return render_template('/result.html',\ number = no,\ name = name,\ dealing = dealing,\ rank = rank,\ key = linker) elif count == 0 or len(counter.ColumnList) >= 50: return render_template('/unknown.html', key=linker) elif count >= 2: column = Examine.getCulumn() question = Examine.getQuestion(column) if not question in counter.QuestionList: counter.ColumnList.append(column) counter.QuestionList.append(question) return render_template('/main.html',\ key = linker,\ question = question) else: while question in counter.QuestionList: column = Examine.getCulumn() question = Examine.getQuestion(column) counter.ColumnList.append(column) counter.QuestionList.append(question) return render_template('/main.html',\ key = linker,\ question = question) else: return render_template('/error.html',\ key = linker)
from market import * from market import supports most_goals = max(map(partition(goals, 'team'), len)) total_goals = len(goals) first_goal = attr(nth(goals, 0), 'team') assert supports(result, most_goals) assert supports(result, total_goals) assert supports(trend, most_goals) assert supports(trend, total_goals) assert supports(selns, most_goals) assert supports(selns, total_goals) print result(most_goals, football_state) print result(most_goals, football_nil) print selns(most_goals) print trend(most_goals, football_nil, football_state) print trend(most_goals, football_nil, football_nil) print result(total_goals, football_state) print result(total_goals, football_nil) print selns(total_goals) print trend(total_goals, football_nil, football_state) calculate = gfootball(football_state) print calculate(most_goals) print calculate(total_goals) print calculate(first_goal)
name = 'hayCara' columns = [('OpenCV', [1], ['delta4','sum'])] properties.append((name, columns)) rev3 = review(excelOpenCV, properties) rev.add(rev3) #print rev.agreement('hayCara', ['Viviana', 'Manuela'], '%') headers11 = ['Acuerdo'] headers12 = ['Desacuerdo'] headers1 = rev.getReviewers('hayCara', names=1) headers11.extend(headers1) headers12.extend(headers1) data11 = rev.agreement('hayCara', ':', '%') data12 = rev.disagreement('hayCara', ':', '%') res1 = result('Hay al menos una cara', [headers11, headers12], [data11, data12]) res1.toExcel('hayCara.xls') #print rev.videosOfDisagreement('hayCara', ['EmocionesCIAE_M', 'EmocionesCIAE_R']) headers21 = ['Acuerdo'] headers22 = ['Desacuerdo'] headers2 = rev.getReviewers('numFaces', names=1) headers21.extend(headers2) headers22.extend(headers2) data21 = rev.agreement('numFaces', ':', '%') data22 = rev.disagreement('numFaces', ':', '%') res2 = result('No. de Caras', [headers21, headers22], [data21, data22]) res2.toExcel('numCaras.xls') print rev.videosOfDisagreement('hayCara',['Ximena','OpenCV'])
def execute_all(self, task, storage=None): """ execute all parametrizations as defined in task object Parameters ---------- task -- the task which is broken down into the individual execution points storage -- if set to a string, will store the result in that path as JSON. If set to a file, will use that. Returns ------- results -- the results of the computation in a list of result objects. """ instruction = task._task_type # print "running a total number of points of", task.get_total_points() setters = {} if instruction == bt.RUN_FG: class_n = task.class_name time.sleep(1) module_n = str(task.module_name) module = __import__(module_n, fromlist=[str(class_n)]) self.block_class = getattr(module, task.class_name) elif instruction == bt.RUN_GRC: if not hasattr(self, "temp_outdir"): self.temp_outdir = tempfile.mkdtemp(suffix="_py", prefix="gr-mtb-") temp_grc_file = tempfile.NamedTemporaryFile(suffix=".grc", delete=False, dir=self.temp_outdir) temp_grc_file.write(task.grcxml) temp_grc_file.close() platform = Platform() data = platform.parse_flow_graph(temp_grc_file.name) fg = platform.get_new_flow_graph() fg.import_data(data) fg.grc_file_path = os.path.abspath(temp_grc_file.name) fg.validate() if not fg.is_valid(): raise StandardError("Compilation error") class_n = fg.get_option("id") filepath = os.path.join(self.temp_outdir, class_n + ".py") gen = platform.get_generator()(fg, filepath) gen.write() module = imp.load_source(class_n, filepath) self.block_class = getattr(module, class_n) results = [] print "processing {:d} points".format(task.get_total_points()) for inst, values in self.parameterize(task, self.block_class): datadict = self._execute(inst, task.sinks) results.append(result(values, datadict)) try: if storage and not hasattr(storage, "write"): outfile = open(str(storage), "w") json.dump([r.to_dict() for r in results], outfile) outfile.close() elif storage: json.dump([r.to_dict() for r in results], storage) except IOError as e: print e return results
def test_main(self): self.assertEqual(result("./testCases/main.txt"), "1 2 4 5 3")
def method_405(e): return result.result(405, "http method is not allowed for the requested URL")
def close(self, status=0): self.lib.result(status) result(self.lib)
def main(): positions = [1,10,100,1000] num_trials = 10000 result(positions, num_trials)
""" Author: Anthony C. Emmanuel Title: Simultaneous Equation Solver Version: 1 Language: Python 3.6 Date: 02-08-2017 License: GPL Latest""" import result as rs import compute as cp import inputs as ip import numpy as np print( "Simultaneous Equation Solver\nAuthor:Anthony C. Emmanuel\nDate:02-08-2017\n" ) while True: getva = ip.inputs() a, b = getva z = cp.compute(a, b) print("\nThe result: \n") rs.result(z) print("\n")
# day = int(raw_input("Enter the day : ")) # df = download_data(sym,day) # df = change_adder(df) # make_oscillator(df) # continue if(x==7): kite_init() continue if(x==8): start_ticking() continue if(x==9): result() continue if(x==11): r1 = int(input("\nEnter start for range : ")) r2 = int(input("Enter end for range : ")) if(r1 == 0): new = True else: new = False for i in range(r1,r2): df = download_data(all_stocks.iat[i,0],1) # print df if(len(df)<=75): add_to_blacklist(all_stocks[i:i+1],new) new = False print all_stocks[i:i+1]+" "+str(len(df))
def init_ui(self): # 添加栅格布局 # 布局只能添加到Widget里 # 所以先添加一个Widget grid = QGridLayout() # 这个叫widget的是主widget。左侧为一列功能键,右侧为页面 self.widget = QWidget() self.widget.setObjectName("main") self.widget.setLayout(grid) self.setCentralWidget(self.widget) grid.setSpacing(15) # 这里是左侧的一堆功能键 self.btn_welcome = QPushButton(qtawesome.icon('fa.sellsy'), '欢迎光临', self) self.btn_welcome.clicked[bool].connect(self.button_clicked) self.btn_welcome.setObjectName("left") self.btn_input = QPushButton(qtawesome.icon('fa.music'), '期权参数', self) self.btn_input.clicked[bool].connect(self.button_clicked) self.btn_input.setObjectName("left") self.btn_result = QPushButton(qtawesome.icon('fa.download'), '查看价格', self) self.btn_result.clicked[bool].connect(self.button_clicked) self.btn_result.setObjectName("left") self.btn_result.setEnabled(False) self.btn_list = QPushButton(qtawesome.icon('fa.film'), '算法一览', self) self.btn_list.clicked[bool].connect(self.button_clicked) self.btn_list.setObjectName("left") self.btn_about = QPushButton(qtawesome.icon('fa.star'), '关于我们', self) self.btn_about.clicked[bool].connect(self.button_clicked) self.btn_about.setObjectName("left") self.btn_quit = QPushButton(qtawesome.icon('fa.question'), '退出系统', self) self.btn_quit.clicked[bool].connect(self.button_clicked) self.btn_quit.setObjectName("left") grid.addWidget(self.btn_welcome, 4, 0) grid.addWidget(self.btn_input, 5, 0) grid.addWidget(self.btn_result, 6, 0) grid.addWidget(self.btn_list, 7, 0) grid.addWidget(self.btn_about, 8, 0) grid.addWidget(self.btn_quit, 9, 0) # 这里是每个功能键的页面 self.page_welcome = page.page(grid, self) welcome.welcome(self.page_welcome) self.page_result = page.page(grid, self) result.result(self.page_result) self.page_list = page.page(grid, self) list.list(self.page_list) self.page_about = page.page(grid, self) about.about(self.page_about) self.page_quit = page.page(grid, self) quit.quit(self.page_quit) self.page_input = page.page(grid, self) input.input(self.page_input) self.page_welcome.show(self) # 给布局添加上左侧功能键和LOGO logo = QLabel(self) directory = "img/logo2.png" pix = QPixmap(directory) logo.setPixmap(pix) grid.addWidget(logo, 1, 0, 3, 1) # 设置标题logo self.setWindowIcon(QIcon(directory)) # 居中并绘制 self.resize(1280, 720) self.center() self.setWindowTitle('MiniSQL') # 导入qss样式 directory = "style.qss" with open(directory, 'r') as f: qss_style = f.read() self.setStyleSheet(qss_style) self.show() self.button_change(self.btn_welcome)
m = re.search(r'>([a-zA-Z0-9]*?)</span>', content) if m: return m.group(1) else: return 'Not Found' def md5_crack(md5, result): result.bruteforce_md5['www.2d5.net'] = md5_2d5(md5) result.bruteforce_md5['www.somd5.com'] = md5_somd5(md5) result.bruteforce_md5['www.md5.cc'] = md5_md5cc(md5) #print md5_2d5(md5) #print md5_somd5(md5) #print md5_md5cc(md5) if __name__ == '__main__': r = result.result() #process = hydra('10.1.10.115', 'ssh') #while 1: # status = hydra_getstatus(process) # print status # if status == 'Done': # break md5_crack('47BCE5C74F589F4867DBD57E9CA9F8E8', r) for key in r.bruteforce_md5.keys(): print key + '|' + r.bruteforce_md5[key] #bruteforce_wordpress('http://jwjcc.bfsu.edu.cn/wp-login.php', 'jwjcc', r) #print r.bruteforce_wordpress
def hello_world(): test = result.result(200, "ping successful", "Welcome to restful api server.") return str(test[1])