Ejemplo n.º 1
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--model_path', help='Path to model', type=str)

    parser = parser.parse_args(args)

    dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
                              transform=transforms.Compose([Normalizer(), Resizer()]))
    dataset_val.image_ids = dataset_val.image_ids[:50] # TEST

    # Create the model
    retinanet = model.resnet50(num_classes=dataset_val.num_classes(), pretrained=True)

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet.load_state_dict(torch.load(parser.model_path))
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet.load_state_dict(torch.load(parser.model_path))
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = False
    retinanet.eval()
    retinanet.module.freeze_bn()

    coco_eval.evaluate_coco(dataset_val, retinanet)
Ejemplo n.º 2
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--model_path', help='Path to model', type=str)

    parser = parser.parse_args(args)

    model_path = './model_final.pt'
    test_path = './test'
    dataset_test = AIZOODataset(test_path, transforms=transforms.Compose([Normalizer(), Resizer()]))

    # Create the model
    retinanet = model.resnet50(num_classes=3, pretrained=False)

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.load(model_path)
        #retinanet.load_state_dict(checkpoint.module)
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet.load_state_dict(torch.load(model_path))
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = False
    retinanet.eval()
    #retinanet.freeze_bn()

    coco_eval.evaluate_coco(dataset_test, retinanet)
Ejemplo n.º 3
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--load_model_path',
                        help='Path to model(.pt file)',
                        type=str)

    parser = parser.parse_args(args)

    # dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
    #                           transform=transforms.Compose([Normalizer(), Resizer()]))

    dataset_val = CocoDataset(parser.coco_path,
                              set_name='val',
                              transform=transforms.Compose(
                                  [Normalizer(), Resizer()]))

    # Create the model
    # retinanet = model.resnet50(num_classes=dataset_val.num_classes(), pretrained=True)
    retinanet = torch.load(parser.load_model_path)

    use_gpu = True

    if use_gpu:
        retinanet = retinanet.cuda()

    retinanet = torch.nn.DataParallel(retinanet).cuda()

    retinanet.training = False
    retinanet.eval()
    retinanet.module.freeze_bn()

    coco_eval.evaluate_coco(dataset_val, retinanet)
Ejemplo n.º 4
0
def main(args=None):
	parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

	parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.')
	parser.add_argument('--coco_path', help='Path to COCO directory')
	parser.add_argument('--csv_train', help='Path to file containing training annotations (see readme)')
	parser.add_argument('--csv_classes', help='Path to file containing class list (see readme)')
	parser.add_argument('--csv_val', help='Path to file containing validation annotations (optional, see readme)')

	parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
	parser.add_argument('--config', help='Config file path that contains scale and ratio values', type=str)
	parser.add_argument('--epochs', help='Number of epochs', type=int, default=50)
	parser.add_argument('--init-lr', help='Initial learning rate for training process', type=float, default=1e-3)
	parser.add_argument('--batch-size', help='Number of input images per step', type=int, default=1)
	parser.add_argument('--num-workers', help='Number of worker used in dataloader', type=int, default=1)

	# For resuming training from saved checkpoint
	parser.add_argument('--resume', help='Whether to resume training from checkpoint', action='store_true')
	parser.add_argument('--saved-ckpt', help='Resume training from this checkpoint', type=str)

	parser.add_argument('--multi-gpus', help='Allow to use multi gpus for training task', action='store_true')
	parser.add_argument('--snapshots', help='Location to save training snapshots', type=str, default="snapshots")

	parser.add_argument('--log-dir', help='Location to save training logs', type=str, default="logs")
	parser.add_argument('--expr-augs', help='Allow to use use experiment augmentation methods', action='store_true')
	parser.add_argument('--aug-methods', help='(Experiment) Augmentation methods to use, separate by comma symbol', type=str, default="rotate,hflip,brightness,contrast")
	parser.add_argument('--aug-prob', help='Probability of applying (experiment) augmentation in range [0.,1.]', type=float, default=0.5)

	parser = parser.parse_args(args)

	train_transforms = [Normalizer(), Resizer(), Augmenter()]

	# Define transform methods
	if parser.expr_augs:
		aug_map = get_aug_map(p=parser.aug_prob)
		aug_methods = parser.aug_methods.split(",")
		for aug in aug_methods:
			if aug in aug_map.keys():
				train_transforms.append(aug_map[aug])
			else:
				print(f"{aug} is not available.")

	# Create the data loaders
	if parser.dataset == 'coco':

		if parser.coco_path is None:
			raise ValueError('Must provide --coco_path when training on COCO,')

		dataset_train = CocoDataset(parser.coco_path, set_name='train2017',
									transform=transforms.Compose(train_transforms))
		dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
								  transform=transforms.Compose([Normalizer(), Resizer()]))

	elif parser.dataset == 'csv':

		if parser.csv_train is None:
			raise ValueError('Must provide --csv_train when training on COCO,')

		if parser.csv_classes is None:
			raise ValueError('Must provide --csv_classes when training on COCO,')

		dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
								   transform=transforms.Compose(train_transforms))

		if parser.csv_val is None:
			dataset_val = None
			print('No validation annotations provided.')
		else:
			dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes,
									 transform=transforms.Compose([Normalizer(), Resizer()]))

	else:
		raise ValueError('Dataset type not understood (must be csv or coco), exiting.')

	sampler = AspectRatioBasedSampler(dataset_train, batch_size=parser.batch_size, drop_last=False)
	dataloader_train = DataLoader(dataset_train, num_workers=parser.num_workers, collate_fn=collater, batch_sampler=sampler)

	if dataset_val is not None:
		sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=parser.batch_size, drop_last=False)
		dataloader_val = DataLoader(dataset_val, num_workers=parser.num_workers, collate_fn=collater, batch_sampler=sampler_val)

	config = dict({"scales": None,
					"ratios": None})
	
	if parser.config:
		config = load_config(parser.config, config)

	if parser.depth == 18:
		retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True, ratios=config["ratios"], scales=config["scales"])
	elif parser.depth == 34:
		retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True, ratios=config["ratios"], scales=config["scales"])
	elif parser.depth == 50:
		retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True, ratios=config["ratios"], scales=config["scales"])
	elif parser.depth == 101:
		retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True, ratios=config["ratios"], scales=config["scales"])
	elif parser.depth == 152:
		retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True, ratios=config["ratios"], scales=config["scales"])
	else:
		raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

	optimizer = optim.Adam(retinanet.parameters(), lr=parser.init_lr)

	if parser.resume:
		if not parser.saved_ckpt:
			print("No saved checkpoint provided for resuming training. Exiting now...")
			return 
		if not os.path.exists(parser.saved_ckpt):
			print("Invalid saved checkpoint path. Exiting now...")
			return

		# Restore last state
		retinanet, optimizer, start_epoch = load_ckpt(parser.saved_ckpt, retinanet, optimizer)
		if parser.epochs <= start_epoch:
			print("Number of epochs must be higher than number of trained epochs of saved checkpoint.")
			return

	use_gpu = True

	if use_gpu:
		print("Using GPU for training process")
		if torch.cuda.is_available():
			if parser.multi_gpus:
				print("Using multi-gpus for training process")
				retinanet = torch.nn.DataParallel(retinanet.cuda(), device_ids=[0,1])
			else:
				retinanet = torch.nn.DataParallel(retinanet.cuda())
	else:
		retinanet = torch.nn.DataParallel(retinanet)

	retinanet.training = True

	scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=1, verbose=True)

	loss_hist = collections.deque(maxlen=500)

	retinanet.train()
	retinanet.module.freeze_bn()

	print('Num training images: {}'.format(len(dataset_train)))

	# Tensorboard writer
	writer = SummaryWriter(parser.log_dir)

	# Save snapshots dir
	if not os.path.exists(parser.snapshots):
		os.makedirs(parser.snapshots)

	best_mAP = 0
	start_epoch = 0 if not parser.resume else start_epoch 

	for epoch_num in range(start_epoch, parser.epochs):

		retinanet.train()
		retinanet.module.freeze_bn()

		epoch_loss = []
		epoch_csf_loss = []
		epoch_reg_loss = []

		for iter_num, data in enumerate(dataloader_train):
			try:
				optimizer.zero_grad()

				if torch.cuda.is_available():
					with torch.cuda.device(0):
						classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
				else:
					classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']])
					
				classification_loss = classification_loss.mean()
				regression_loss = regression_loss.mean()

				loss = classification_loss + regression_loss
				epoch_csf_loss.append(float(classification_loss))
				epoch_reg_loss.append(float(regression_loss))

				if bool(loss == 0):
					continue

				loss.backward()

				torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

				optimizer.step()

				loss_hist.append(float(loss))

				epoch_loss.append(float(loss))

				print(
					'\rEpoch: {}/{} | Iteration: {}/{} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
						(epoch_num + 1), parser.epochs, (iter_num + 1), len(dataloader_train), float(classification_loss), float(regression_loss), np.mean(loss_hist)), end='')

				del classification_loss
				del regression_loss
			except Exception as e:
				print(e)
				continue

		# writer.add_scalar("Loss/train", loss, epoch_num)

		_epoch_loss = np.mean(epoch_loss)
		_epoch_csf_loss = np.mean(epoch_reg_loss)
		_epoch_reg_loss = np.mean(epoch_reg_loss)

		if parser.dataset == 'coco':

			print('Evaluating dataset')

			coco_eval.evaluate_coco(dataset_val, retinanet)

			scheduler.step(_epoch_loss)

		elif parser.dataset == 'csv' and parser.csv_val is not None:

			print('\nEvaluating dataset')

			APs = csv_eval.evaluate(dataset_val, retinanet)
			mAP = round(mean(APs[ap][0] for ap in APs.keys()), 5)
			print("mAP: %f" %mAP)
			writer.add_scalar("validate/mAP", mAP, epoch_num)
			
			# Handle lr_scheduler wuth mAP value
			scheduler.step(mAP)


		lr = get_lr(optimizer)
		writer.add_scalar("train/classification-loss", _epoch_csf_loss, epoch_num)
		writer.add_scalar("train/regression-loss", _epoch_reg_loss, epoch_num)
		writer.add_scalar("train/loss", _epoch_loss, epoch_num)
		writer.add_scalar("train/learning-rate", lr, epoch_num)

		# Save model file, optimizer and epoch number

		checkpoint = {
		    'epoch': epoch_num,
		    'state_dict': retinanet.state_dict(),
		    'optimizer': optimizer.state_dict(),
		}

		# torch.save(retinanet.module, os.path.join(parser.snapshots, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num)))
		
		# Check whether this epoch's model achieves highest mAP value
		is_best = False
		if best_mAP < mAP:
			best_mAP = mAP 
			is_best = True  

		save_ckpt(checkpoint, is_best, parser.snapshots, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num + 1))

		print('\n')

	retinanet.eval()

	torch.save(retinanet, 'model_final.pt')

	writer.flush()
Ejemplo n.º 5
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=150)
    parser.add_argument('--gpu_num', help='default gpu', type=int, default=5)
    parser.add_argument('--saved_dir',
                        help='saved dir',
                        default='trained_models/coco/resnet50/')

    parser = parser.parse_args(args)

    # GPU 할당 변경하기
    GPU_NUM = parser.gpu_num
    device = torch.device(
        f'cuda:{GPU_NUM}' if torch.cuda.is_available() else 'cpu')
    torch.cuda.set_device(device)  # change allocation of current GPU
    print(device)
    print('Current cuda device ', torch.cuda.current_device())  # check
    device_ids = [5, 4, 3, 1, 7]

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=8,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=8,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   device=device,
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   device=device,
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   device=device,
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    device=device,
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    device=device,
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.to(device)

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet,
                                          device_ids=[5, 4, 3, 1, 7],
                                          output_device=GPU_NUM).to(device)
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)
    criterion = FocalLoss(device)
    criterion = criterion.to(device)

    #     optimizer = optim.Adam(retinanet.parameters(), lr = 1e-7)
    #     scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=30, T_mult=2, eta_max=0.0004,  T_up=10, gamma=0.5)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        loss_per_epoch = 2

        start_time = time.time()
        for iter_num, data in enumerate((dataloader_train)):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    outputs = retinanet(
                        [data['img'].to(device).float(), data['annot']])
                else:
                    outputs = retinanet([data['img'].float(), data['annot']])

                classification, regression, anchors, annotations = (outputs)
                classification_loss, regression_loss = criterion(
                    classification, regression, anchors, annotations)

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))
                if iter_num % 500 == 0:
                    print(
                        'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                        .format(epoch_num, iter_num,
                                float(classification_loss),
                                float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        print('epoch time :', time.time() - start_time)
        if loss_per_epoch > np.mean(loss_hist):
            print('best model is saved')
            torch.save(retinanet.state_dict(),
                       parser.saved_dir + 'best_model.pt')
            loss_per_epoch = np.mean(loss_hist)

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
Ejemplo n.º 6
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )
    parser.add_argument('--exp_name',
                        help='Path to folder for saving the model and log',
                        type=str)
    parser.add_argument('--output_folder',
                        help='Path to folder for saving all the experiments',
                        type=str)

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)  # 100
    parser.add_argument('--batch_size', help='Batch size', type=int, default=2)
    parser.add_argument('--lr',
                        help='Number of epochs',
                        type=float,
                        default=1e-5)
    parser.add_argument('--caption',
                        help='Any thing in particular about the experiment',
                        type=str)
    parser.add_argument('--server',
                        help='seerver name',
                        type=str,
                        default='ultron')
    parser.add_argument('--detector',
                        help='detection algo',
                        type=str,
                        default='RetinaNet')
    parser.add_argument('--arch', help='model architecture', type=str)
    parser.add_argument('--pretrain', default=False, action='store_true')
    parser.add_argument('--freeze_batchnorm',
                        default=False,
                        action='store_true')

    parser = parser.parse_args(args)

    output_folder_path = os.path.join(parser.output_folder, parser.exp_name)
    if not os.path.exists(output_folder_path):
        os.makedirs(output_folder_path)

    PARAMS = {
        'dataset': parser.dataset,
        'exp_name': parser.exp_name,
        'depth': parser.depth,
        'epochs': parser.epochs,
        'batch_size': parser.batch_size,
        'lr': parser.lr,
        'caption': parser.caption,
        'server': parser.server,
        'arch': parser.arch,
        'pretrain': parser.pretrain,
        'freeze_batchorm': parser.freeze_batchnorm
    }

    exp = neptune.create_experiment(
        name=parser.exp_name,
        params=PARAMS,
        tags=[parser.arch, parser.detector, parser.dataset, parser.server])

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=parser.batch_size,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18 and parser.arch == 'Resnet':
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=parser.pretrain)
    elif parser.depth == 10 and parser.arch == 'Resnet':
        retinanet = model.resnet10(num_classes=dataset_train.num_classes(),
                                   pretrained=parser.pretrain)
    elif parser.depth == 18 and parser.arch == 'BiRealNet18':
        checkpoint_path = None
        if parser.pretrain:
            checkpoint_path = '/media/Rozhok/Bi-Real-net/pytorch_implementation/BiReal18_34/models/imagenet_baseline/checkpoint.pth.tar'
        retinanet = birealnet18(checkpoint_path,
                                num_classes=dataset_train.num_classes())
    elif parser.depth == 34 and parser.arch == 'Resnet':
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=parser.pretrain)
    elif parser.depth == 50 and parser.arch == 'Resnet':
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=parser.pretrain)
    elif parser.depth == 101 and parser.arch == 'Resnet':
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=parser.pretrain)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=parser.pretrain)
    elif parser.arch == 'ofa':
        print("Model is ResNet50D.")
        bn_momentum = 0.1
        bn_eps = 1e-5
        retinanet = ResNet50D(
            n_classes=dataset_train.num_classes(),
            bn_param=(bn_momentum, bn_eps),
            dropout_rate=0,
            width_mult=1.0,
            depth_param=3,
            expand_ratio=0.35,
        )

    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    print(retinanet)

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=parser.lr)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    if parser.freeze_batchnorm:
        retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        exp.log_metric('Current lr', float(optimizer.param_groups[0]['lr']))
        exp.log_metric('Current epoch', int(epoch_num))

        retinanet.train()
        if parser.freeze_batchnorm:
            retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):

            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet(
                        [data['img'].cuda().float(), data['annot']])
                else:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                exp.log_metric('Training: Classification loss',
                               float(classification_loss))
                exp.log_metric('Training: Regression loss',
                               float(regression_loss))
                exp.log_metric('Training: Totalloss', float(loss))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val,
                                    retinanet,
                                    output_folder_path,
                                    exp=exp)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(
            retinanet.module,
            os.path.join(
                output_folder_path,
                '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num)))

    retinanet.eval()

    torch.save(retinanet, os.path.join(output_folder_path, 'model_final.pt'))
Ejemplo n.º 7
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.',
                        default='csv')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)',
        default='data/train_retinanet.csv')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)',
                        default='data/class_retinanet.csv')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)',
        default='data/val_retinanet.csv')

    parser.add_argument('--model_path',
                        default='coco_resnet_50_map_0_335_state_dict.pt',
                        help='Path to file containing pretrained retinanet')

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs_detection',
                        help='Number of epochs for detection',
                        type=int,
                        default=50)
    parser.add_argument('--epochs_classification',
                        help='Number of epochs for classification',
                        type=int,
                        default=50)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=1,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if parser.model_path is not None:
        print('loading ', parser.model_path)
        if 'coco' in parser.model_path:
            retinanet.load_state_dict(torch.load(parser.model_path),
                                      strict=False)
        else:
            retinanet = torch.load(parser.model_path)
        print('Pretrained model loaded!')

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    #Here training the detection
    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=4,
                                                     verbose=True)
    loss_hist = collections.deque(maxlen=500)
    loss_style_classif = nn.CrossEntropyLoss()

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))
    mAP_list = []
    mAPbest = 0
    for epoch_num in range(parser.epochs_detection):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    [classification_loss, regression_loss], style = retinanet(
                        [data['img'].cuda().float(), data['annot']])
                else:
                    [classification_loss, regression_loss
                     ], style = retinanet([data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()
                if torch.cuda.is_available():
                    style_loss = loss_style_classif(
                        style,
                        torch.tensor(data['style']).cuda())
                else:
                    style_loss = loss_style_classif(
                        style, torch.tensor(data['style']))
                loss = classification_loss + regression_loss + style_loss

                if bool(loss == 0):
                    continue

                loss.backward()
                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)
                optimizer.step()
                loss_hist.append(float(loss))
                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.4f} | Regression loss: {:1.4f} | Style loss: {:1.4f} | Running loss: {:1.4f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), float(style_loss),
                            np.mean(loss_hist)))

                del classification_loss
                del regression_loss
                del style_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':
            print('Evaluating dataset')
            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:
            print('Evaluating dataset')
            mAPclasses, mAP, accu = csv_eval.evaluate(dataset_val, retinanet)
            mAP_list.append(mAP)
            print('mAP_list', mAP_list)
        if mAP > mAPbest:
            print('Saving best checkpoint')
            torch.save(retinanet, 'model_best.pt')
            mAPbest = mAP

        scheduler.step(np.mean(epoch_loss))
        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()
    torch.save(retinanet, 'model_final.pt')

    # Here we aggregate all the data to don't have to appy the Retinanet during training.
    retinanet.load_state_dict(torch.load('model_best.pt').state_dict())
    List_feature = []
    List_target = []
    retinanet.training = False
    retinanet.eval()
    retinanet.module.style_inference = True

    retinanet.module.freeze_bn()

    epoch_loss = []
    with torch.no_grad():
        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    _, _, feature_vec = retinanet(data['img'].cuda().float())
                else:
                    _, _, feature_vec = retinanet(data['img'].float())
                List_feature.append(torch.squeeze(feature_vec).cpu())
                List_target.append(data['style'][0])
            except Exception as e:
                print(e)
                continue
    print('END of preparation of the data for classification of style')
    # Here begins Style training. Need to set to style_train. They are using the same loader, as it was expected to train both at the same time.

    batch_size_classification = 64
    dataloader_train_style = torch.utils.data.DataLoader(
        StyleDataset(List_feature, List_target),
        batch_size=batch_size_classification)

    retinanet.load_state_dict(torch.load('model_best.pt').state_dict())

    # Here training the detection

    retinanet.module.style_inference = False
    retinanet.module.style_train(True)
    retinanet.training = True
    retinanet.train()
    optimizer = optim.Adam(
        retinanet.module.styleClassificationModel.parameters(),
        lr=5e-3,
        weight_decay=1e-3)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     mode='max',
                                                     patience=4,
                                                     verbose=True)
    loss_hist = collections.deque(maxlen=500)
    loss_style_classif = nn.CrossEntropyLoss()
    retinanet.train()
    retinanet.module.freeze_bn()
    criterion = nn.CrossEntropyLoss()
    accu_list = []
    accubest = 0
    for epoch_num in range(parser.epochs_classification):

        retinanet.train()
        retinanet.module.freeze_bn()
        epoch_loss = []
        total = 0
        correct = 0
        for iter_num, data in enumerate(dataloader_train_style):
            try:
                optimizer.zero_grad()
                inputs, targets = data
                if torch.cuda.is_available():
                    inputs, targets = inputs.cuda(), targets.cuda()

                outputs = retinanet.module.styleClassificationModel(
                    inputs, 0, 0, 0, True)
                loss = criterion(outputs, targets)
                loss.backward()
                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)
                optimizer.step()
                loss_hist.append(float(loss))
                epoch_loss.append(float(loss))
                total += targets.size(0)
                _, predicted = torch.max(outputs.data, 1)
                correct += predicted.eq(targets.data).cpu().sum()

                print(
                    '| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tLoss: %.4f Acc@1: %.3f%%'
                    %
                    (epoch_num, parser.epochs_classification, iter_num + 1,
                     (len(dataloader_train_style) // batch_size_classification)
                     + 1, loss.item(), 100. * correct / total))

            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':
            print('Evaluating dataset')
            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:
            print('Evaluating dataset')
            mAPclasses, mAP, accu = csv_eval.evaluate(dataset_val, retinanet)
            accu_list.append(accu)
            print('mAP_list', mAP_list, 'accu_list', accu_list)
        if accu > accubest:
            print('Saving best checkpoint')
            torch.save(retinanet.module, 'model_best_classif.pt')
            accubest = accu

        scheduler.step(accu)
        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()
    torch.save(retinanet.module, 'model_final.pt')
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        type=str,
                        default='csv',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        type=str,
        default=
        r'/usr/idip/idip/liuan/project/pytorch_retinanet/RetinaNet-PFA-SPANet/train.csv',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument(
        '--csv_classes',
        type=str,
        default=
        r'/usr/idip/idip/liuan/project/pytorch_retinanet/RetinaNet-PFA-SPANet/class.csv',
        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        type=str,
        default=
        r'/usr/idip/idip/liuan/project/pytorch_retinanet/RetinaNet-PFA-SPANet/val.csv',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )
    parser.add_argument(
        '--model_save_path',
        type=str,
        default=
        r'/usr/idip/idip/liuan/project/pytorch_retinanet/RetinaNet-PFA-SPANet/model/resnet101+PFA+CFPN/',
        help='Path to save model')

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=101)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=150)
    parser.add_argument('--iter_num',
                        help='Iter number of saving checkpoint',
                        type=int,
                        default=5)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))
    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=2,
                                      drop_last=False)
    # 将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    # add gap save model count variable
    n = 0

    for epoch_num in range(parser.epochs):
        n += 1

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            # try:
            optimizer.zero_grad()

            if torch.cuda.is_available():
                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])
            else:
                classification_loss, regression_loss = retinanet(
                    [data['img'].float(), data['annot']])

            classification_loss = classification_loss.mean()
            regression_loss = regression_loss.mean()

            loss = classification_loss + regression_loss

            if bool(loss == 0):
                continue

            loss.backward()

            torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

            optimizer.step()

            loss_hist.append(float(loss))

            epoch_loss.append(float(loss))

            print(
                'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                .format(epoch_num, iter_num, float(classification_loss),
                        float(regression_loss), np.mean(loss_hist)))

            del classification_loss
            del regression_loss
            # except Exception as e:
            #     print(e)
            #     continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        if n % parser.iter_num == 0:
            torch.save(
                retinanet.module, parser.model_save_path + '/' +
                '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, parser.model_save_path + '/' + 'model_final.pt')
Ejemplo n.º 9
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description="Simple training script for training a RetinaNet network.")

    parser.add_argument("--dataset",
                        help="Dataset type, must be one of csv or coco.")
    parser.add_argument("--coco_path", help="Path to COCO directory")
    parser.add_argument(
        "--csv_train",
        help="Path to file containing training annotations (see readme)")
    parser.add_argument("--csv_classes",
                        help="Path to file containing class list (see readme)")
    parser.add_argument(
        "--csv_val",
        help=
        "Path to file containing validation annotations (optional, see readme)",
    )
    parser.add_argument(
        "--depth",
        help="Resnet depth, must be one of 18, 34, 50, 101, 152",
        type=int,
        default=50,
    )
    parser.add_argument("--batch_size", help="Batch size", type=int, default=2)
    parser.add_argument("--epochs",
                        help="Number of epochs",
                        type=int,
                        default=100)
    parser.add_argument("--workers",
                        help="Number of workers of dataleader",
                        type=int,
                        default=4)
    parser = parser.parse_args(args)

    writer = SummaryWriter("logs")

    # Create the data loaders
    if parser.dataset == "coco":

        if parser.coco_path is None:
            raise ValueError("Must provide --coco_path when training on COCO,")

        dataset_train = CocoDataset(
            parser.coco_path,
            set_name="train2017",
            transform=transforms.Compose(
                [Normalizer(), Augmenter(),
                 Resizer()]),
        )
        dataset_val = CocoDataset(
            parser.coco_path,
            set_name="val2017",
            transform=transforms.Compose([Normalizer(),
                                          Resizer()]),
        )

    elif parser.dataset == "csv":

        if parser.csv_train is None:
            raise ValueError("Must provide --csv_train when training on COCO,")

        if parser.csv_classes is None:
            raise ValueError(
                "Must provide --csv_classes when training on COCO,")

        dataset_train = CSVDataset(
            train_file=parser.csv_train,
            class_list=parser.csv_classes,
            transform=transforms.Compose(
                [Normalizer(), Augmenter(),
                 Resizer()]),
        )

        if parser.csv_val is None:
            dataset_val = None
            print("No validation annotations provided.")
        else:
            dataset_val = CSVDataset(
                train_file=parser.csv_val,
                class_list=parser.csv_classes,
                transform=transforms.Compose([Normalizer(),
                                              Resizer()]),
            )

    else:
        raise ValueError(
            "Dataset type not understood (must be csv or coco), exiting.")

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=parser.batch_size,
                                      drop_last=False)
    dataloader_train = DataLoader(
        dataset_train,
        num_workers=parser.workers,
        collate_fn=collater,
        batch_sampler=sampler,
    )

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=parser.workers,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            "Unsupported model depth, must be one of 18, 34, 50, 101, 152")

    use_gpu = True

    if use_gpu:
        retinanet = retinanet.cuda()

    retinanet = torch.nn.DataParallel(retinanet).cuda()

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=10,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print("Num training images: {}".format(len(dataset_train)))

    global_step = 0
    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            global_step = iter_num + epoch_num * len(dataloader_train)

            try:
                optimizer.zero_grad()

                classification_loss, regression_loss = retinanet(
                    [data["img"].cuda().float(), data["annot"]])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                if iter_num % 10 == 0:
                    print(
                        "Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}"
                        .format(
                            epoch_num,
                            iter_num,
                            float(classification_loss),
                            float(regression_loss),
                            np.mean(loss_hist),
                        ))

                    writer.add_scalars(
                        "training",
                        {
                            "loss": loss,
                            "loss_cls": classification_loss,
                            "loss_reg": regression_loss,
                        },
                        global_step,
                    )

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == "coco":

            print("Evaluating dataset")

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == "csv" and parser.csv_val is not None:

            print("Evaluating dataset")

            mAP = csv_eval.evaluate(dataset_val, retinanet)

            valid_mAP = [x[0] for x in mAP.values() if x[1] > 0]
            mmAP = sum(valid_mAP) / len(mAP)
            writer.add_scalars("validation", {"mmAP": mmAP}, global_step)

        scheduler.step(np.mean(epoch_loss))

        torch.save(
            retinanet.module,
            "checkpoints/{}_retinanet_{}.pt".format(parser.dataset, epoch_num),
        )

    retinanet.eval()

    torch.save(retinanet, "checkpoints/odel_final.pt")
Ejemplo n.º 10
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset', default='csv', help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--csv_train', default='dataset/pascal_train.csv', help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes', default='dataset/classes.csv', help='Path to file containing class list (see readme)')
    parser.add_argument('--csv_val', default='dataset/pascal_val.csv', help='Path to file containing validation annotations (optional, see readme)')

    parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
    parser.add_argument('--epochs', help='Number of epochs', type=int, default=100)
    parser.add_argument('--weights_folder', help='path to save weight', type=str, required=True)


    parser = parser.parse_args(args)
    if not os.path.exists(parser.weights_folder):
        os.makedirs(parser.weights_folder)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path, set_name='train2017',
                                    transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
        dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
                                  transform=transforms.Compose([Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError('Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
                                   transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes,
                                     transform=transforms.Compose([Normalizer(), Resizer()]))

    else:
        raise ValueError('Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train, batch_size=5, drop_last=False)
    dataloader_train = DataLoader(dataset_train, num_workers=4, collate_fn=collater, batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=8, drop_last=False)
        dataloader_val = DataLoader(dataset_val, num_workers=4, collate_fn=collater, batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))
    # import ipdb; ipdb.set_trace()
    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        total_loss = 0
        total_regression_loss = 0
        total_classification_loss = 0
        with tqdm(dataloader_train, unit="batch") as tepoch:
            for data in tepoch:
            # for iter_num, data in tepoch:#enumerate(dataloader_train):
                tepoch.set_description(f"Epoch {epoch_num}")
                try:
                    optimizer.zero_grad()

                    if torch.cuda.is_available():
                        classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
                    else:
                        classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']])
                        
                    classification_loss = classification_loss.mean()
                    regression_loss = regression_loss.mean()

                    loss = classification_loss + regression_loss

                    total_loss = total_loss + loss
                    total_regression_loss = total_regression_loss + regression_loss
                    total_classification_loss = total_classification_loss + classification_loss

                    if bool(loss == 0):
                        continue

                    loss.backward()

                    torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                    optimizer.step()

                    loss_hist.append(float(loss))

                    epoch_loss.append(float(loss))

                    # print(
                        # 'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
                        #     epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
                    tepoch.set_postfix(cls_loss="{:1.5f}".format(classification_loss), reg_loss="{:1.5f}".format(regression_loss))
                    time.sleep(0.1)
                    del classification_loss
                    del regression_loss
                except Exception as e:
                    print(e)
                    continue
        tb.add_scalar('Training loss', total_loss, epoch_num)
        tb.add_scalar('Training regression loss', total_regression_loss, epoch_num)
        tb.add_scalar('Training accuracy loss', total_classification_loss, epoch_num)
        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            
            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module, '{}/{}_retinanet_{}.pt'.format(parser.weights_folder,parser.dataset, epoch_num))


    retinanet.eval()

    torch.save(retinanet, '{}/model_final.pt'.format(parser.weights_folder))
Ejemplo n.º 11
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument(
        '--dataset', help='Dataset type, must be one of csv or coco.')  #数据集类型
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)  #选择与训练模型
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    #决定图片数据集的顺序和batch_size,返回的是图片的分组
    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=2,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        retinanet = retinanet.cuda()

    #多GPU运行
    retinanet = torch.nn.DataParallel(retinanet).cuda()

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    #collections:模块实现了特定目标的容器,以提供Python标准内建容器 dict、list、set、tuple 的替代选择
    #collections.deque:返回双向队列对象,最长长度为500
    loss_hist = collections.deque(maxlen=500)

    # model.train() :启用 BatchNormalization 和 Dropout
    # model.eval() :不启用 BatchNormalization 和 Dropout
    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                #反向传播
                loss.backward()

                #梯度裁剪,梯度小于/大于阈值时,更新的梯度为阈值(此处为小于0.1)
                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                #更新所有的参数,一旦梯度被如backward()之类的函数计算好后,我们就可以调用这个函数
                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        #optimizer.step()通常用在每个mini-batch之中,而scheduler.step()通常用在epoch里面
        #有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。
        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
Ejemplo n.º 12
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--csv_train', help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes', help='Path to file containing class list (see readme)')
    parser.add_argument('--csv_val', help='Path to file containing validation annotations (optional, see readme)')
    parser.add_argument('--iou',default='05')
    parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
    parser.add_argument('--epochs', help='Number of epochs', type=int, default=100)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path, set_name='train2017',
                                    transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
        dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
                                  transform=transforms.Compose([Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError('Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
                                   transform=transforms.Compose([Normalizer(), Resizer()]))
        val_dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
                                   transform=transforms.Compose([Normalizer(),  Resizer()]))
        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes,
                                     transform=transforms.Compose([Normalizer(), Resizer()]))

    else:
        raise ValueError('Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train, batch_size=8, drop_last=False)
    dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=8, drop_last=False)
        dataloader_val = DataLoader(dataset_val, num_workers=3, collate_fn=collater, batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=5e-5)
    lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
    multistep_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5,8,11,20], gamma=0.2)

    loss_hist = collections.deque(maxlen=500)
    val_loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        val_epoch_loss=[]

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
                else:
                    classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']])
                    
                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()
                
                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Train: Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f} | Epoch loss: {:1.5f} '.format(
                        epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist),epoch_loss[-1]))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue
        
        
        for iter_num, data in enumerate(dataloader_val):
            try:
                #optimizer.zero_grad()
                #retinanet.eval()
                with torch.no_grad():
                    if torch.cuda.is_available():
                        classification_loss, regression_loss = retinanet((data['img'].cuda().float(), data['annot']))
                    else:
                        classification_loss, regression_loss = retinanet((data['img'].float(), data['annot']))
                        
                    classification_loss = classification_loss.mean()
                    regression_loss = regression_loss.mean()

                    loss = classification_loss + regression_loss

                    if bool(loss == 0):
                        continue

                    #loss.backward()

                    #torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                    #optimizer.step()

                    val_loss_hist.append(float(loss))

                    val_epoch_loss.append(float(loss))

                print(
                    'Val: Epoch: {} |  Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f} | Epoch loss: {:1.5f} '.format(
                        epoch_num,  float(classification_loss), float(regression_loss), np.mean(val_loss_hist),val_epoch_loss[-1]))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')
            #mAP_train = csv_eval.evaluate(val_dataset_train,retinanet,iou_threshold=float(parser.iou)/10)
            mAP_val = csv_eval.evaluate(dataset_val, retinanet,iou_threshold=float(parser.iou)/10)
            #writer.add_scalar('train_mAP_Questions',mAP_train[0][0],epoch_num)
            writer.add_scalar('val_mAP_Questions', mAP_val[0][0], epoch_num)
            writer.add_scalar('val_loss',np.mean(val_epoch_loss),epoch_num)
            writer.add_scalar('train_loss',np.mean(epoch_loss),epoch_num)
        lr_scheduler.step(np.mean(epoch_loss))
        #one_scheduler.step()
        multistep_scheduler.step()
        torch.save(retinanet.module, '{}_retinanet_{}.pt'.format(parser.iou, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
Ejemplo n.º 13
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument('--csv_train', help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes', help='Path to file containing class list (see readme)')
    parser.add_argument('--csv_val', help='Path to file containing validation annotations (optional, see readme)')

    parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
    parser.add_argument('--epochs', help='Number of epochs', type=int, default=100)

    parser.add_argument('--dcn_layers', type =str, help = 'comma seperated str where laters to be used, 0..3',default = None)
    parser.add_argument('--use_depth', action='store_true', help='if specified, use depth for deformconv')
    parser = parser.parse_args(args)
    use_dcn = [False, False, False, False]
    
    if parser.dcn_layers is not None:    
        _t = parser.dcn_layers.split(',')
        for __t in _t:
            use_dcn[int(__t)] = True
    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path, set_name='train2017',
                                    transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
        dataset_val = CocoDataset(parser.coco_path, set_name='val2017',
                                  transform=transforms.Compose([Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError('Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
                                   transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes,
                                     transform=transforms.Compose([Normalizer(), Resizer()]))

    else:
        raise ValueError('Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train, batch_size=128, drop_last=False)
    dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=1, drop_last=False)
        dataloader_val = DataLoader(dataset_val, num_workers=3, collate_fn=collater, batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True, use_dcn = use_dcn, use_depth = parser.use_depth)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True
    writer = SummaryWriter()

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))
    #mAP = csv_eval.evaluate(dataset_val, retinanet)
    global_step = 0
    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        
        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()
                global_step += 1
                if torch.cuda.is_available():
                    if parser.use_depth and 'depth' in data:
                        classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']],depth = data['depth'].cuda())
                    else:
                        classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
                else:
                    if parser.use_depth and 'depth' in data:
                        classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']],depth=data['depth'])
                    else:
                        classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']])
                    
                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()
                writer.add_scalar('CLS Loss',classification_loss,global_step)
                writer.add_scalar('REG Loss',regression_loss,global_step)
                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
                        epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
    writer.close()
Ejemplo n.º 14
0
def main(args=None):
    parser = argparse.ArgumentParser(description = 'Simple training script for training a RetinaNet network.')
    parser.add_argument('--s', help = 'training session', type = int)
    parser.add_argument('--bs', help = 'batch size', type = int, default = 4)
    parser.add_argument('--lr', help = 'learning rate', type = float, default = 0.001)
    parser.add_argument('--save_int', help = 'interval for saving model', type = int)
    parser.add_argument('--dataset', help = 'Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help = 'Path to COCO directory')
    parser.add_argument('--csv_train', help = 'Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes', help = 'Path to file containing class list (see readme)')
    parser.add_argument('--csv_val', help = 'Path to file containing validation annotations (optional, see readme)')
    parser.add_argument('--depth', help = 'Resnet depth, must be one of 18, 34, 50, 101, 152', type = int, default = 50)
    parser.add_argument('--epochs', help = 'Number of epochs', type = int, default = 100)
    parser.add_argument('--use_tb', help = 'whether to use tensorboard', action = 'store_true')
    parser.add_argument('--use_aug', help = 'whether to use data augmentation', action = 'store_true')

    parser = parser.parse_args(args)
    session = parser.s
    session_dir = 'session_{:02d}'.format(session)
    assert os.path.isdir('models'), '[ERROR] models folder not exist'
    assert os.path.isdir('logs'), '[ERROR] logs folder not exist'
    model_dir = os.path.join('models', session_dir)
    logs_dir = os.path.join('logs', session_dir)
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)
    if not os.path.isdir(logs_dir):
        os.mkdir(logs_dir)

    # set up tensorboard logger
    tb_writer = None
    if parser.use_tb:
        tb_writer = SummaryWriter('logs')

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')
        
        if parser.use_aug:
            #transform = transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
            dataset_train = CocoDataset(parser.coco_path, set_name='train2017', transform = transforms.Compose([Normalizer(), Augmenter(), ToTensor()]))
             
        else:
            dataset_train = CocoDataset(parser.coco_path, set_name='train2017', transform = transforms.Compose([Normalizer(), ToTensor()]))

        dataset_val = CocoDataset(parser.coco_path, set_name='val2017', transform = transforms.Compose([Normalizer(), ToTensor()]))
                                  #transform = transforms.Compose([Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError('Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes,
                                   transform=transforms.Compose([Normalizer(), Augmenter(), ToTensor()]))
                                   #transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes,
                                     transform=transforms.Compose([Normalizer(), Augmenter(), ToTensor()]))
                                     #transform=transforms.Compose([Normalizer(), Resizer()]))

    else:
        raise ValueError('Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train, batch_size = parser.bs, drop_last = False)
    dataloader_train = DataLoader(dataset_train, num_workers = 0, collate_fn = collater, batch_sampler = sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val, batch_size = parser.bs, drop_last = False)
        dataloader_val = DataLoader(dataset_val, num_workers = 0, collate_fn = collater, batch_sampler = sampler_val)

    print('# classes: {}'.format(dataset_train.num_classes))
    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes = dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes = dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes = dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes = dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes = dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        retinanet = retinanet.cuda()

    # disable multi-GPU train
    retinanet = torch.nn.DataParallel(retinanet).cuda()

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr = parser.lr)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience = 3, verbose = True)

    loss_hist = collections.deque(maxlen = 500)

    retinanet.train()
    #retinanet.module.freeze_bn() if DataParallel activated
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        # retinanet.module.freeze_bn() if DataParallel activated
        retinanet.module.freeze_bn()

        epoch_loss = []
        iter_per_epoch = len(dataloader_train)

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()
                assert data['img'][0].shape[0] == 3, '[ERROR] data first dim should be 3! ({})'.format(data['img'][0].shape)
                # data['img']: (B, C, H, W)
                # data['annot']: [x1, y1, x2, y2, class_id]
                classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                # epoch starts from 0
                if (iter_num + 1) % 1 == 0:
                    print(
                        'Epoch: {} | Iteration: {} | Total loss: {:1.5f} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
                                        epoch_num, iter_num, float(loss), float(classification_loss), float(regression_loss), np.mean(loss_hist)
                                )
                            )
                
                # update tensorboard
                if tb_writer is not None:
                    crt_iter = (epoch_num) * iter_per_epoch + (iter_num + 1)
                    tb_dict = {
                        'total_loss': float(loss),
                        'classification_loss': float(classification_loss),
                        'regression_loss': float(regression_loss)
                    }
                    tb_writer.add_scalars('session_{:02d}/loss'.format(session), tb_dict, crt_iter)

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')
            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))
        if (epoch_num + 1) % parser.save_int == 0:
            # retinanet (before DataParallel): <class 'retinanet.model.ResNet'>, no self.module
            # retinanet (after DataParallel): <class 'torch.nn.parallel.data_parallel.DataParallel>, self.module available
            # retinanet.module (after DataParallel): <class 'retinanet.model.ResNet'>
            torch.save(retinanet.module.state_dict(), os.path.join(model_dir, 'retinanet_s{:02d}_e{:03d}.pth'.format(session, epoch_num)))

    if parser.use_tb:
        tb_writer.close()

    retinanet.eval()
    torch.save(retinanet.module.state_dict(), os.path.join(model_dir, 'retinanet_s{:02d}_e{:03d}.pth'.format(session, epoch_num)))
Ejemplo n.º 15
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=25)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    # create samplers for both training and validation
    # using muti CPU cores to accelerate data loading

    sampler_train1 = torch.utils.data.SequentialSampler(dataset_train)
    sampler_train2 = torch.utils.data.BatchSampler(sampler_train1,
                                                   batch_size=1,
                                                   drop_last=True)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=10,
                                  collate_fn=collater,
                                  batch_sampler=sampler_train2)

    sampler_val1 = torch.utils.data.SequentialSampler(dataset_val)
    sampler_val2 = torch.utils.data.BatchSampler(sampler_val1,
                                                 batch_size=1,
                                                 drop_last=True)
    dataloader_val = DataLoader(dataset_val,
                                num_workers=10,
                                collate_fn=collater,
                                batch_sampler=sampler_val2)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    # ADAM optimizer
    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    # using tensorboardX to show training process
    writer = SummaryWriter('log')

    iter_sum = 0
    time_sum = 0
    frame_num = 8

    for epoch_num in range(parser.epochs):

        # only work for frame_num > 8
        frame_list = collections.deque(maxlen=frame_num)
        anno_list = collections.deque(maxlen=frame_num)

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for index, data in enumerate(dataloader_train):
            try:

                frame_list.append(data['img'])
                anno_list.append(data['annot'])

                # if frame_num != 32:
                if index < 31:
                    continue
                if index >= 697 and index <= 697 + 32:
                    continue

                # real_frame is the frame we used for fish detection
                # It's the last frame in the batch group
                real_frame = frame_list[-1]

                # the annotation for real_frame
                annot = anno_list[-1]

                # drop useless frames
                data['img'] = torch.cat(list(frame_list), dim=0)

                optimizer.zero_grad()

                classification_loss, regression_loss = retinanet([
                    data['img'].cuda().float(),
                    real_frame.cuda().float(),
                    annot.cuda().float()
                ])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                writer.add_scalar('loss_hist', np.mean(loss_hist), iter_sum)
                writer.add_scalar('classification_loss',
                                  float(classification_loss), iter_sum)
                writer.add_scalar('regression_loss', float(regression_loss),
                                  iter_sum)
                writer.add_scalar('loss', float(loss), iter_sum)

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, index, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
                iter_sum = iter_sum + 1
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            # evaluate coco
            coco_eval.evaluate_coco(dataset_val, dataloader_val, retinanet,
                                    frame_num)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(
            retinanet.module,
            'checkpoint/{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'save/model_final.pt')

    writer.close()
Ejemplo n.º 16
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=2,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    epoch_loss_mem = -999999
    in_a_row = 0

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet(
                        [data['img'].cuda().float(), data['annot']])
                else:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)
            map_val = float(mAP.get(0)[0])

            if map_val < epoch_loss_mem:
                in_a_row += 1
                if in_a_row >= PATIENCE:
                    print('Early Stop, Epoch', epoch_num)
                    break
                else:
                    print('Validation Performance Decreased for', in_a_row,
                          'Run(s)')
            else:
                epoch_loss_mem = map_val
                in_a_row = 0

        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
Ejemplo n.º 17
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.',
                        default='csv')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)
    parser.add_argument('--batch_size', help='Batch size', type=int, default=2)
    parser.add_argument('--num_workers',
                        help='Number of workers',
                        type=int,
                        default=4)
    parser.add_argument('--models_out',
                        help='The directory to save models',
                        type=str)

    parser = parser.parse_args(args)

    if not os.path.exists(parser.models_out):
        os.makedirs(parser.models_out)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=parser.batch_size,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=parser.num_workers,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=parser.num_workers,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        retinanet = retinanet.cuda()

    retinanet = torch.nn.DataParallel(retinanet).cuda()

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))
    writer = SummaryWriter(log_dir="tensor_log/" + parser.models_out)

    global_steps = 0
    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                running_loss = np.mean(loss_hist)
                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), running_loss))
                global_steps += 1
                writer.add_scalar("Loss/Classification",
                                  float(classification_loss), global_steps)
                writer.add_scalar("Loss/Regression", float(regression_loss),
                                  global_steps)
                writer.add_scalar("Loss/Running", running_loss, global_steps)

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)
            #for k, v in mAP.items():
            #    writer.add_scalar("Accuracy/map_{}".format(k), v, epoch_num)

        scheduler.step(np.mean(epoch_loss))

        torch.save(
            retinanet.module,
            os.path.join(
                parser.models_out,
                '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num)))

    retinanet.eval()

    torch.save(retinanet, os.path.join(parser.models_out, 'model_final.pt'))
Ejemplo n.º 18
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.',
                        default='coco')
    parser.add_argument(
        '--coco_path',
        help='Path to COCO directory',
        default=
        '/media/zhuzhu/ec114170-f406-444f-bee7-a3dc0a86cfa2/dataset/coco')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)

    parser.add_argument('--use-gpu',
                        help='training on cpu or gpu',
                        action='store_false',
                        default=True)
    parser.add_argument('--device-ids', help='GPU device ids', default=[0])

    args = parser.parse_args()

    # ------------------------------ Create the data loaders -----------------------------
    if args.dataset == 'coco':

        if args.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(args.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(args.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    sampler_train = AspectRatioBasedSampler(dataset_train,
                                            batch_size=2,
                                            drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler_train)
    sampler_val = AspectRatioBasedSampler(dataset_val,
                                          batch_size=1,
                                          drop_last=False)
    dataloader_val = DataLoader(dataset_val,
                                num_workers=3,
                                collate_fn=collater,
                                batch_sampler=sampler_val)

    # Create the model
    if args.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif args.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif args.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=False)
    elif args.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif args.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    if args.use_gpu:
        retinanet = nn.DataParallel(retinanet,
                                    device_ids=args.device_ids).cuda()

    # retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(args.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                nn.utils.clip_grad_norm_(retinanet.parameters(),
                                         0.1)  # 梯度的最大范数为0.1

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if args.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        torch.save(retinanet.module,
                   '{}_retinanet_{}.pt'.format(args.dataset, epoch_num))

    retinanet.eval()

    torch.save(retinanet, 'model_final.pt')
Ejemplo n.º 19
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)
    parser.add_argument('--model', help='Path to model (.pt) file.')

    parser.add_argument('--finetune',
                        help='if load trained retina model',
                        type=bool,
                        default=False)
    parser.add_argument('--gpu', help='', type=bool, default=False)
    parser.add_argument('--batch_size', help='', type=int, default=2)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    #sampler = AspectRatioBasedSampler(dataset_train, batch_size=2, drop_last=False)
    sampler = AspectRatioBasedSampler(dataset_train,
                                      parser.batch_size,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    '''
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')
    '''

    use_gpu = parser.gpu

    #import pdb
    #pdb.set_trace()

    #读coco预训练模型
    retinanet = model.resnet50(num_classes=80, pretrained=True)
    retinanet.load_state_dict(torch.load(parser.model))
    for param in retinanet.parameters():
        param.requires_grad = False

    retinanet.regressionModel = model.RegressionModel(256)
    retinanet.classificationModel = model.ClassificationModel(
        256, num_classes=dataset_train.num_classes())

    prior = 0.01
    retinanet.classificationModel.output.weight.data.fill_(0)
    retinanet.classificationModel.output.bias.data.fill_(-math.log(
        (1.0 - prior) / prior))

    retinanet.regressionModel.output.weight.data.fill_(0)
    retinanet.regressionModel.output.bias.data.fill_(0)

    # for m in retinanet.classificationModel.modules():
    #     if isinstance(m, nn.Conv2d):
    #         n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    #         m.weight.data.normal_(0, math.sqrt(2. / n))
    #     elif isinstance(m, nn.BatchNorm2d):
    #         m.weight.data.fill_(1)
    #         m.bias.data.zero_()

    # for m in retinanet.regressionModel.modules():
    #     if isinstance(m, nn.Conv2d):
    #         n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    #         m.weight.data.normal_(0, math.sqrt(2. / n))
    #     elif isinstance(m, nn.BatchNorm2d):
    #         m.weight.data.fill_(1)
    #         m.bias.data.zero_()

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if use_gpu and torch.cuda.is_available():
        #retinanet.load_state_dict(torch.load(parser.model))
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        #retinanet.load_state_dict(torch.load(parser.model))
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(
        [{
            'params': retinanet.module.regressionModel.parameters()
        }, {
            'params': retinanet.module.classificationModel.parameters()
        }], 1e-6)

    #optimizer = optim.Adam(retinanet.parameters(), lr=1e-6)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                #import pdb
                #pdb.set_trace()

                optimizer.zero_grad()

                if use_gpu and torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet(
                        [data['img'].cuda().float(), data['annot'].cuda()])
                else:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                    .format(epoch_num, iter_num, float(classification_loss),
                            float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        if epoch_num % 5 == 0:
            torch.save(
                retinanet.module,
                '{}_freezinetune_{}.pt'.format(parser.dataset, epoch_num))

    retinanet.eval()
Ejemplo n.º 20
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )
    parser.add_argument('--model_save_path',
                        help='Path to save model',
                        type=str)

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))
    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    sampler = AspectRatioBasedSampler(dataset_train,
                                      batch_size=8,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=3,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=3,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    # add draw tensorboard code
    writer = SummaryWriter(log_dir='./logs/416*416/', flush_secs=60)
    # if Cuda:
    #     graph_inputs = torch.from_numpy(np.random.rand(1, 3, input_shape[0], input_shape[1])).type(
    #         torch.FloatTensor).cuda()
    # else:
    #     graph_inputs = torch.from_numpy(np.random.rand(1, 3, input_shape[0], input_shape[1])).type(torch.FloatTensor)
    # writer.add_graph(model, (graph_inputs,))

    # add gap save model count variable
    n = 0

    for epoch_num in range(parser.epochs):
        n += 1

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []

        ### begin calculate train loss
        for iter_num, data in enumerate(dataloader_train):
            # try:
            optimizer.zero_grad()

            if torch.cuda.is_available():
                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])
            else:
                classification_loss, regression_loss = retinanet(
                    [data['img'].float(), data['annot']])

            classification_loss = classification_loss.mean()
            regression_loss = regression_loss.mean()

            loss = classification_loss + regression_loss

            if bool(loss == 0):
                continue

            loss.backward()

            torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

            optimizer.step()

            loss_hist.append(float(loss))

            epoch_loss.append(float(loss))

            print(
                'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                .format(epoch_num, iter_num, float(classification_loss),
                        float(regression_loss), np.mean(loss_hist)))

            del classification_loss
            del regression_loss
            # except Exception as e:
            #     print(e)
            #     continue

        ### begin calculate valid loss
        for iter_num, data in enumerate(dataloader_val):
            # try:
            optimizer.zero_grad()

            if torch.cuda.is_available():
                classification_loss, regression_loss = retinanet(
                    [data['img'].cuda().float(), data['annot']])
            else:
                classification_loss, regression_loss = retinanet(
                    [data['img'].float(), data['annot']])

            classification_loss = classification_loss.mean()
            regression_loss = regression_loss.mean()

            loss = classification_loss + regression_loss

            if bool(loss == 0):
                continue

            loss_hist.append(float(loss))

            print(
                'Epoch: {} | Iteration: {} | Valid-Classification loss: {:1.5f} | Valid-Regression loss: {:1.5f} | Running Valid loss: {:1.5f}'
                .format(epoch_num, iter_num, float(classification_loss),
                        float(regression_loss), np.mean(loss_hist)))

            del classification_loss
            del regression_loss

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)
            print('Epoch: {} | mAP: {:.3f}'.format(epoch_num, float(mAP)))

        scheduler.step(np.mean(epoch_loss))

        if n % 10 == 0:
            torch.save(
                retinanet.module, parser.model_save_path +
                '/' + '{}_retinanet_{}_{:.3f}.pt'.format(
                    parser.dataset, epoch_num, mAP))

    retinanet.eval()

    torch.save(retinanet, parser.model_save_path + '/' + 'model_final.pt')
Ejemplo n.º 21
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)
    parser.add_argument('--local_rank', help='Local rank', type=int, default=0)
    parser.add_argument('--distributed', action='store_true')
    parser.add_argument('--pretrained', action='store_true')

    parser = parser.parse_args(args)

    torch.cuda.set_device(parser.local_rank)
    DISTRIBUTED = parser.distributed and config.DISTRIBUTED
    if DISTRIBUTED:
        distributed.init_process_group(backend="nccl")
    device = torch.device(f'cuda:{parser.local_rank}')

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    if DISTRIBUTED:
        sampler = DistributedSampler(dataset_train)
        dataloader_train = DataLoader(dataset_train,
                                      num_workers=4,
                                      batch_size=batch_size,
                                      collate_fn=collater,
                                      sampler=sampler,
                                      pin_memory=True,
                                      drop_last=True)
        if dataset_val is not None:
            sampler_val = DistributedSampler(dataset_val)
            dataloader_val = DataLoader(dataset_val,
                                        batch_size=1,
                                        num_workers=4,
                                        collate_fn=collater,
                                        sampler=sampler_val,
                                        pin_memory=True,
                                        drop_last=True)
    else:
        sampler = AspectRatioBasedSampler(dataset_train,
                                          batch_size=batch_size,
                                          drop_last=False)
        dataloader_train = DataLoader(dataset_train,
                                      num_workers=4,
                                      collate_fn=collater,
                                      batch_sampler=sampler,
                                      pin_memory=True)
        if dataset_val is not None:
            sampler_val = AspectRatioBasedSampler(dataset_val,
                                                  batch_size=1,
                                                  drop_last=False)
            dataloader_val = DataLoader(dataset_val,
                                        num_workers=4,
                                        collate_fn=collater,
                                        batch_sampler=sampler_val,
                                        pin_memory=True)

    # Create the model
    if parser.depth == 18:
        retinanet = model.retinanet18(num_classes=dataset_train.num_classes(),
                                      pretrained=parser.pretrained)
    elif parser.depth == 34:
        retinanet = model.retinanet34(num_classes=dataset_train.num_classes(),
                                      pretrained=parser.pretrained)
    elif parser.depth == 50:
        retinanet = model.retinanet50(num_classes=dataset_train.num_classes(),
                                      pretrained=parser.pretrained)
    elif parser.depth == 101:
        retinanet = model.retinanet101(num_classes=dataset_train.num_classes(),
                                       pretrained=parser.pretrained)
    elif parser.depth == 152:
        retinanet = model.retinanet152(num_classes=dataset_train.num_classes(),
                                       pretrained=parser.pretrained)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    if use_cuda:
        retinanet = retinanet.cuda()

    if RESTORE:
        retinanet.load_state_dict(torch.load(RESTORE))

    if DISTRIBUTED:
        retinanet = torch.nn.parallel.DistributedDataParallel(
            retinanet, device_ids=[parser.local_rank])
        print("Let's use", parser.local_rank, "GPU!")

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    if DISTRIBUTED:
        retinanet.module.freeze_bn()
    else:
        retinanet.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    for epoch_num in range(parser.epochs):
        save_to_disk = parser.local_rank == 0
        retinanet.train()
        if DISTRIBUTED:
            retinanet.module.freeze_bn()
        else:
            retinanet.freeze_bn()

        epoch_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                optimizer.zero_grad()

                if use_cuda:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].cuda().float(), data['annot'].cuda()])
                else:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))
                if save_to_disk:
                    print(
                        'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                        .format(epoch_num, iter_num,
                                float(classification_loss),
                                float(regression_loss), np.mean(loss_hist)))

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue
        if save_to_disk:
            if parser.dataset == 'coco':

                print('Evaluating dataset')

                coco_eval.evaluate_coco(dataset_val, retinanet)

            elif parser.dataset == 'csv' and parser.csv_val is not None:

                print('Evaluating dataset')

                mAP = csv_eval.evaluate(dataset_val, retinanet)

            scheduler.step(np.mean(epoch_loss))
            if DISTRIBUTED:
                torch.save(
                    retinanet.module.state_dict(),
                    '{}/{}_retinanet_{}.pt'.format(checkpoints_dir,
                                                   parser.dataset, epoch_num))
            else:
                torch.save(
                    retinanet.state_dict(),
                    '{}/{}_retinanet_{}.pt'.format(checkpoints_dir,
                                                   parser.dataset, epoch_num))
Ejemplo n.º 22
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Simple training script for training a RetinaNet network.')

    parser.add_argument('--dataset',
                        help='Dataset type, must be one of csv or coco.')
    parser.add_argument('--coco_path', help='Path to COCO directory')
    parser.add_argument(
        '--csv_train',
        help='Path to file containing training annotations (see readme)')
    parser.add_argument('--csv_classes',
                        help='Path to file containing class list (see readme)')
    parser.add_argument(
        '--csv_val',
        help=
        'Path to file containing validation annotations (optional, see readme)'
    )

    parser.add_argument(
        '--depth',
        help='Resnet depth, must be one of 18, 34, 50, 101, 152',
        type=int,
        default=50)
    parser.add_argument('--epochs',
                        help='Number of epochs',
                        type=int,
                        default=100)

    parser.add_argument('--finetune',
                        help='if load trained retina model',
                        type=bool,
                        default=False)
    parser.add_argument('--gpu', help='', type=bool, default=False)
    parser.add_argument('--batch_size', help='', type=int, default=2)

    parser.add_argument('--c',
                        help='continue with formal model',
                        type=bool,
                        default=False)
    parser.add_argument('--model', help='model path')

    parser = parser.parse_args(args)

    # Create the data loaders
    if parser.dataset == 'coco':

        if parser.coco_path is None:
            raise ValueError('Must provide --coco_path when training on COCO,')

        dataset_train = CocoDataset(parser.coco_path,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        dataset_val = CocoDataset(parser.coco_path,
                                  set_name='val2017',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))

    elif parser.dataset == 'csv':

        if parser.csv_train is None:
            raise ValueError('Must provide --csv_train when training on COCO,')

        if parser.csv_classes is None:
            raise ValueError(
                'Must provide --csv_classes when training on COCO,')

        dataset_train = CSVDataset(train_file=parser.csv_train,
                                   class_list=parser.csv_classes,
                                   transform=transforms.Compose(
                                       [Normalizer(),
                                        Augmenter(),
                                        Resizer()]))

        if parser.csv_val is None:
            dataset_val = None
            print('No validation annotations provided.')
        else:
            dataset_val = CSVDataset(train_file=parser.csv_val,
                                     class_list=parser.csv_classes,
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))

    else:
        raise ValueError(
            'Dataset type not understood (must be csv or coco), exiting.')

    #sampler = AspectRatioBasedSampler(dataset_train, batch_size=2, drop_last=False)
    sampler = AspectRatioBasedSampler(dataset_train,
                                      parser.batch_size,
                                      drop_last=False)
    dataloader_train = DataLoader(dataset_train,
                                  num_workers=16,
                                  collate_fn=collater,
                                  batch_sampler=sampler)

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(dataset_val,
                                              batch_size=1,
                                              drop_last=False)
        dataloader_val = DataLoader(dataset_val,
                                    num_workers=8,
                                    collate_fn=collater,
                                    batch_sampler=sampler_val)

    epochpassed = 0
    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(),
                                   pretrained=True)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(),
                                    pretrained=True)
    else:
        raise ValueError(
            'Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    if parser.c:
        retinanet = torch.load(parser.model)
        #import pdb
        #pdb.set_trace()
        epochpassed = int(parser.model.split('.')[1].split('_')[-1])
    use_gpu = parser.gpu

    #torch.cuda.set_device(5)
    #import pdb
    #pdb.set_trace()

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if use_gpu and torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()

    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)  #original:1e-5
    #optimizer =optim.SGD(retinanet.parameters(), lr=0.01,weight_decay=0.0001, momentum=0.9)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print('Num training images: {}'.format(len(dataset_train)))

    writer = SummaryWriter()

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        epoch_classification_loss = []
        epoch_regression_loss = []

        for iter_num, data in enumerate(dataloader_train):
            try:
                #import pdb
                #pdb.set_trace()

                optimizer.zero_grad()

                if use_gpu and torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet(
                        [data['img'].cuda().float(), data['annot'].cuda()])
                else:
                    classification_loss, regression_loss = retinanet(
                        [data['img'].float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))
                epoch_classification_loss.append(float(classification_loss))
                epoch_regression_loss.append(float(regression_loss))

                print(
                    'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Epoch loss: {:1.5f}\r'
                    .format(epoch_num + epochpassed, iter_num,
                            float(classification_loss), float(regression_loss),
                            np.mean(loss_hist)),
                    end='')

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        print(
            'Epoch: {}  | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Epoch loss: {:1.5f}'
            .format(epoch_num + epochpassed,
                    np.mean(epoch_classification_loss),
                    np.mean(epoch_regression_loss), np.mean(epoch_loss)))

        writer.add_scalar('lossrecord/regressionloss',
                          np.mean(epoch_regression_loss),
                          epoch_num + epochpassed)
        writer.add_scalar('lossrecord/classificationloss',
                          np.mean(epoch_regression_loss),
                          epoch_num + epochpassed)
        writer.add_scalar('lossrecord/epochloss', np.mean(epoch_loss),
                          epoch_num + epochpassed)

        if parser.dataset == 'coco':

            print('Evaluating dataset')

            coco_eval.evaluate_coco(dataset_val, retinanet)

        elif parser.dataset == 'csv' and parser.csv_val is not None:

            print('Evaluating dataset')

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        if epoch_num % 10 == 0:
            torch.save(
                retinanet.module,
                './models/{}_retinanet{}_highResolution4fold_{}.pt'.format(
                    parser.dataset, parser.depth, epoch_num + epochpassed))

    #retinanet.eval()

    torch.save(
        retinanet.module,
        './models/{}_retinanet{}_highResolution4fold_{}.pt'.format(
            parser.dataset, parser.depth, parser.epochs + epochpassed))
    writer.close()
Ejemplo n.º 23
0
def main():
    global args, results, val_image_ids, logger

    args = parse().parse_args()

    try:
        os.makedirs(args.logdir, exist_ok=True)
    except Exception as exc:
        raise exc

    log_file = os.path.join(args.logdir, "train.log")
    logger = get_logger(__name__, log_file)

    try:
        init_distributed_mode(args)
        distributed = True
    except KeyError:
        args.rank = 0
        distributed = False

    if args.dist_mode == "DP":
        distributed = True
        args.rank = 0

    if args.rank == 0:
        logger.info(f"distributed mode: {args.dist_mode if distributed else 'OFF'}")

    if args.val_image_dir is None:
        if args.rank == 0:
            logger.info(
                "No validation image directory specified, will assume the same image directory for train and val"
            )
        args.val_image_dir = args.image_dir

    writer = SummaryWriter(logdir=args.logdir)
    img_dim = parse_resize(args.resize)
    if args.rank == 0:
        logger.info(f"training image dimensions: {img_dim[0]},{img_dim[1]}")
    ## print out basic info
    if args.rank == 0:
        logger.info("CUDA available: {}".format(torch.cuda.is_available()))
        logger.info(f"torch.__version__ = {torch.__version__}")

    # Create the data loaders
    if args.dataset == "coco":

        # if args.coco_path is None:
        #     raise ValueError("Must provide --coco_path when training on COCO,")
        train_transforms = [Normalizer()]

        if args.augs is None:
            train_transforms.append(Resizer(img_dim))
        else:
            p = 0.5
            if args.augs_prob is not None:
                p = args.augs_prob
            aug_map = get_aug_map(p=p)
            for aug in args.augs:
                if aug in aug_map.keys():
                    train_transforms.append(aug_map[aug])
                else:
                    logger.info(f"{aug} is not available.")
            train_transforms.append(Resizer(img_dim))

        if args.rank == 0:
            if len(train_transforms) == 2:
                logger.info(
                    "Not applying any special augmentations, using only {}".format(train_transforms)
                )
            else:
                logger.info(
                    "Applying augmentations {} with probability {}".format(train_transforms, p)
                )
        dataset_train = CocoDataset(
            args.image_dir, args.train_json_path, transform=transforms.Compose(train_transforms),
        )

    elif args.dataset == "csv":

        if args.csv_train is None:
            raise ValueError("Must provide --csv_train when training on COCO,")

        if args.csv_classes is None:
            raise ValueError("Must provide --csv_classes when training on COCO,")

        dataset_train = CSVDataset(
            train_file=args.csv_train,
            class_list=args.csv_classes,
            # transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]),
            transform=transforms.Compose([Normalizer(), Augmenter(), Resizer(img_dim)]),
        )

        if args.csv_val is None:
            dataset_val = None
            print("No validation annotations provided.")
        else:
            dataset_val = CSVDataset(
                train_file=args.csv_val,
                class_list=args.csv_classes,
                # transform=transforms.Compose([Normalizer(), Resizer()]),
                transform=transforms.Compose([Normalizer(), Resizer(img_dim)]),
            )

    else:
        raise ValueError("Dataset type not understood (must be csv or coco), exiting.")

    if dist.is_available() and distributed and args.dist_mode == "DDP":
        sampler = DistributedSampler(dataset_train)
        dataloader_train = DataLoader(
            dataset_train,
            sampler=sampler,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            collate_fn=collater,
        )

    elif args.nsr is not None:
        logger.info(f"using WeightedRandomSampler with negative (image) sample rate = {args.nsr}")
        weighted_sampler = WeightedRandomSampler(
            dataset_train.weights, len(dataset_train), replacement=True
        )
        dataloader_train = DataLoader(
            dataset_train,
            num_workers=args.num_workers,
            collate_fn=collater,
            sampler=weighted_sampler,
            batch_size=args.batch_size,
            pin_memory=True,
        )

    else:
        sampler = AspectRatioBasedSampler(
            dataset_train, batch_size=args.batch_size, drop_last=False
        )
        dataloader_train = DataLoader(
            dataset_train,
            num_workers=args.num_workers,
            collate_fn=collater,
            batch_sampler=sampler,
            pin_memory=True,
        )

    if args.val_json_path is not None:
        dataset_val = CocoDataset(
            args.val_image_dir,
            args.val_json_path,
            transform=transforms.Compose([Normalizer(), Resizer(img_dim)]),
            return_ids=True,
        )

    # Create the model
    if args.depth == 18:
        retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
    elif args.depth == 34:
        retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
    elif args.depth == 50:
        retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
    elif args.depth == 101:
        retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
    elif args.depth == 152:
        retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
    else:
        raise ValueError("Unsupported model depth, must be one of 18, 34, 50, 101, 152")

    # Load checkpoint if provided.
    retinanet = load_checkpoint(retinanet, args.weights, args.depth)

    use_gpu = True

    if torch.cuda.is_available():
        if dist.is_available() and distributed:
            if args.dist_mode == "DDP":
                retinanet = nn.SyncBatchNorm.convert_sync_batchnorm(retinanet)
                retinanet = retinanet.cuda()
            elif args.dist_mode == "DP":
                retinanet = torch.nn.DataParallel(retinanet).cuda()
            else:
                raise NotImplementedError
        else:
            torch.cuda.set_device(torch.device("cuda:0"))
            retinanet = retinanet.cuda()

    # swav = torch.load("/home/bishwarup/Desktop/swav_ckp-50.pth", map_location=torch.device("cpu"))[
    #     "state_dict"
    # ]
    # swav_dict = collections.OrderedDict()
    # for k, v in swav.items():
    #     k = k[7:]  # discard the module. part
    #     if k in retinanet.state_dict():
    #         swav_dict[k] = v
    # logger.info(f"SwAV => {len(swav_dict)} keys matched")
    # model_dict = copy.deepcopy(retinanet.state_dict())
    # model_dict.update(swav_dict)
    # retinanet.load_state_dict(model_dict)

    # if use_gpu:
    #     if torch.cuda.is_available():

    # if torch.cuda.is_available():
    #     retinanet = torch.nn.DataParallel(retinanet).cuda()
    # else:
    #     retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=0.001)
    # optimizer = torch.optim.SGD(
    #     retinanet.parameters(), lr=4.2, momentum=0.9, weight_decay=1e-4,
    # )

    if dist.is_available() and distributed and args.dist_mode == "DDP":
        optimizer = LARC(optimizer=optimizer, trust_coefficient=0.001, clip=True)

    # optimizer = optim.SGD(retinanet.parameters(), lr=0.0001, momentum=0.95)

    # scheduler = optim.lr_scheduler.CosineAnnealingLR(
    #     optimizer, T_max=args.epochs, eta_min=1e-6
    # )

    warmup_lr_schedule = np.linspace(
        args.start_warmup, args.base_lr, len(dataloader_train) * args.warmup_epochs
    )
    iters = np.arange(len(dataloader_train) * (args.epochs - args.warmup_epochs))
    cosine_lr_schedule = np.array(
        [
            args.final_lr
            + 0.5
            * (args.base_lr - args.final_lr)
            * (
                    1
                    + math.cos(
                math.pi * t / (len(dataloader_train) * (args.epochs - args.warmup_epochs))
            )
            )
            for t in iters
        ]
    )
    lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule))

    if distributed and dist.is_available() and args.dist_mode == "DDP":
        retinanet = nn.parallel.DistributedDataParallel(
            retinanet, device_ids=[args.gpu_to_work_on], find_unused_parameters=True
        )

    # scheduler_warmup = GradualWarmupScheduler(
    #     optimizer, multiplier=100, total_epoch=5, after_scheduler=scheduler
    # )
    # scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
    # scheduler = optim.lr_scheduler.OneCycleLR(
    #     optimizer,
    #     max_lr=1e-4,
    #     total_steps=args.epochs * len(dataloader_train),
    #     pct_start=0.2,
    #     max_momentum=0.95,
    # )

    loss_hist = collections.deque(maxlen=500)

    if dist.is_available() and distributed:
        retinanet.module.train()
        retinanet.module.freeze_bn()
    else:
        retinanet.train()
        retinanet.freeze_bn()
    # retinanet.module.freeze_bn()
    if args.rank == 0:
        logger.info("Number of training images: {}".format(len(dataset_train)))
        if dataset_val is not None:
            logger.info("Number of validation images: {}".format(len(dataset_val)))

    # scaler = amp.GradScaler()
    global best_map
    best_map = 0
    n_iter = 0

    scaler = amp.GradScaler(enabled=True)
    global keep_pbar
    keep_pbar = not (distributed and args.dist_mode == "DDP")

    for epoch_num in range(args.epochs):

        # scheduler_warmup.step(epoch_num)
        if dist.is_available() and distributed:
            if args.dist_mode == "DDP":
                dataloader_train.sampler.set_epoch(epoch_num)
            retinanet.module.train()
            retinanet.module.freeze_bn()
        else:
            retinanet.train()
            retinanet.freeze_bn()
        # retinanet.module.freeze_bn()

        epoch_loss = []
        results = []
        val_image_ids = []

        pbar = tqdm(enumerate(dataloader_train), total=len(dataloader_train), leave=keep_pbar)
        for iter_num, data in pbar:
            n_iter = epoch_num * len(dataloader_train) + iter_num

            for param_group in optimizer.param_groups:
                lr = lr_schedule[n_iter]
                param_group["lr"] = lr

            optimizer.zero_grad()

            if torch.cuda.is_available():
                with amp.autocast(enabled=False):
                    classification_loss, regression_loss = retinanet(
                        [data["img"].cuda().float(), data["annot"].cuda()]
                    )
            else:
                classification_loss, regression_loss = retinanet(
                    [data["img"].float(), data["annot"]]
                )

            classification_loss = classification_loss.mean()
            regression_loss = regression_loss.mean()
            loss = classification_loss + regression_loss
            # for param_group in optimizer.param_groups:
            #     lr = param_group["lr"]

            if args.rank == 0:
                writer.add_scalar("Learning rate", lr, n_iter)
            pbar_desc = f"Epoch: {epoch_num} | lr = {lr:0.6f} | batch: {iter_num} | cls: {classification_loss:.4f} | reg: {regression_loss:.4f}"
            pbar.set_description(pbar_desc)
            pbar.update(1)
            if bool(loss == 0):
                continue

            # loss.backward()
            scaler.scale(loss).backward()

            # unscale the gradients for grad clipping
            scaler.unscale_(optimizer)

            torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

            # optimizer.step()
            # scheduler.step()  # one cycle lr operates at batch level
            scaler.step(optimizer)
            scaler.update()

            loss_hist.append(float(loss))

            epoch_loss.append(float(loss))

            del classification_loss
            del regression_loss

        if args.dataset == "coco":

            # print("Evaluating dataset")
            # if args.plot:
            #     stats = coco_eval.evaluate_coco(
            #         dataset_val,
            #         retinanet,
            #         args.logdir,
            #         args.batch_size,
            #         args.num_workers,
            #         writer,
            #         n_iter,
            #     )
            # else:
            #     stats = coco_eval.evaluate_coco(
            #         dataset_val,
            #         retinanet,
            #         args.logdir,
            #         args.batch_size,
            #         args.num_workers,
            #     )
            if len(dataset_val) > 0:
                if dist.is_available() and distributed and args.dist_mode == "DDP":
                    sampler_val = DistributedSampler(dataset_val)
                    dataloader_val = DataLoader(
                        dataset_val,
                        sampler=sampler_val,
                        batch_size=args.batch_size,
                        num_workers=args.num_workers,
                        collate_fn=eval_collate,
                        pin_memory=True,
                    )
                else:
                    dataloader_val = DataLoader(
                        dataset_val,
                        batch_size=args.batch_size,
                        num_workers=args.num_workers,
                        collate_fn=eval_collate,
                        pin_memory=True,
                        drop_last=False,
                    )

            validate(retinanet, dataset_val, dataloader_val)

            if args.rank == 0:
                if len(results):
                    with open(os.path.join(args.logdir, "val_bbox_results.json"), "w") as f:
                        json.dump(results, f, indent=4)
                    stats = coco_eval.evaluate_coco(dataset_val, val_image_ids, args.logdir)
                    map_avg, map_50, map_75, map_small = stats[:4]
                else:
                    map_avg, map_50, map_75, map_small = [-1] * 4

                if map_50 > best_map:
                    torch.save(
                        retinanet.state_dict(),
                        os.path.join(args.logdir, f"retinanet_resnet{args.depth}_best.pt"),
                    )
                    best_map = map_50
                writer.add_scalar("eval/[email protected]:0.95", map_avg, epoch_num * len(dataloader_train))
                writer.add_scalar("eval/[email protected]", map_50, epoch_num * len(dataloader_train))
                writer.add_scalar("eval/[email protected]", map_75, epoch_num * len(dataloader_train))
                writer.add_scalar("eval/map_small", map_small, epoch_num * len(dataloader_train))
                logger.info(
                    f"Epoch: {epoch_num} | lr = {lr:.6f} |[email protected]:0.95 = {map_avg:.4f} | [email protected] = {map_50:.4f} | [email protected] = {map_75:.4f} | map-small = {map_small:.4f}"
                )

        elif args.dataset == "csv" and args.csv_val is not None:

            # logger.info("Running eval...")

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        # scheduler.step(np.mean(epoch_loss))
        # scheduler.step()
        # torch.save(retinanet.module, os.path.join(args.logdir, f"retinanet_{epoch_num}.pt"))

    retinanet.eval()
Ejemplo n.º 24
0
def main(args=None):
    parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
    parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.', default='show')
    parser.add_argument('--coco_path', help='Path to COCO directory', default='/mnt/marathon')
    parser.add_argument('--image_size', help='image size', type=int, nargs=2, default=IMAGE_SIZE)
    parser.add_argument('--limit', help='limit', type=int, nargs=2, default=(0, 0))
    parser.add_argument('--batch_size', help='batch size', type=int, default=BATCH_SIZE)
    parser.add_argument('--num_works', help='num works', type=int, default=NUM_WORKERS)
    parser.add_argument('--num_classes', help='num classes', type=int, default=3)
    parser.add_argument('--merge_val', help='merge_val', type=int, default=MERGE_VAL)
    parser.add_argument('--do_aug', help='do_aug', type=int, default=DO_AUG)
    parser.add_argument('--lr_choice', default=LR_CHOICE, choices=['lr_scheduler', 'lr_map', 'lr_fn'], type=str)
    parser.add_argument('--lr', help='lr', type=float, default=LR)
    parser.add_argument("--lr_map", dest="lr_map", action=StoreDictKeyPair, default=LR_MAP)
    parser.add_argument("--lr_fn", dest="lr_fn", action=StoreDictKeyPair, default=LR_FN)
    parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=DEPTH)
    parser.add_argument('--epochs', help='Number of epochs', type=int, default=EPOCHS)
    parser = parser.parse_args(args)

    print('dataset:', parser.dataset)
    print('depth:', parser.depth)
    print('epochs:', parser.epochs)
    print('image_size:', parser.image_size)
    print('batch_size:', parser.batch_size)
    print('num_works:', parser.num_works)
    print('merge_val:', parser.merge_val)
    print('do_aug:', parser.do_aug)
    print('lr_choice:', parser.lr_choice)
    print('lr:', parser.lr)
    print('lr_map:', parser.lr_map)
    print('lr_fn:', parser.lr_fn)
    print('num_classes:', parser.num_classes)
    print('limit:', parser.limit)

    # Create the data loaders
    # dataset_train, _ = torch.utils.data.random_split(dataset_train, [NUM_COCO_DATASET_TRAIN, len(dataset_train) - NUM_COCO_DATASET_TRAIN])
    # dataset_val, _ = torch.utils.data.random_split(dataset_val, [NUM_COCO_DATASET_VAL, len(dataset_val) - NUM_COCO_DATASET_VAL])

    transform_train = None
    transform_vail = None
    collate_fn = None
    if parser.do_aug:
        transform_train = get_augumentation('train', parser.image_size[0], parser.image_size[1])
        transform_vail = get_augumentation('test', parser.image_size[0], parser.image_size[1])
        collate_fn = detection_collate
    else:
        transform_train = transforms.Compose([
            # Normalizer(),
            # Augmenter(),
            Resizer(*parser.image_size)])
        transform_vail = transforms.Compose([
            # Normalizer(), 
            Resizer(*parser.image_size)])
        collate_fn = collater

    if parser.dataset == 'h5':
        dataset_train = H5CoCoDataset('{}/train_small.hdf5'.format(parser.coco_path), 'train_small')
        dataset_val = H5CoCoDataset('{}/test.hdf5'.format(parser.coco_path), 'test')
    else:
        dataset_train = CocoDataset(parser.coco_path, set_name='train_small', do_aug=parser.do_aug,
            transform=transform_train, limit_len=parser.limit[0])
        dataset_val = CocoDataset(parser.coco_path, set_name='test', do_aug=parser.do_aug,
            transform=transform_vail, limit_len=parser.limit[1])

    # 混合val
    if parser.merge_val:
        dataset_train += dataset_val

    print('training images: {}'.format(len(dataset_train)))
    print('val images: {}'.format(len(dataset_val)))
    
    steps_pre_epoch = len(dataset_train) // parser.batch_size
    print('steps_pre_epoch:', steps_pre_epoch)

    sampler = AspectRatioBasedSampler(dataset_train, batch_size=parser.batch_size, drop_last=False)
    dataloader_train = DataLoader(dataset_train, batch_size=1, num_workers=parser.num_works, shuffle=False,
        collate_fn=collate_fn, batch_sampler=sampler)

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(num_classes=parser.num_classes, pretrained=PRETRAINED)
    elif parser.depth == 34:
        retinanet = model.resnet34(num_classes=parser.num_classes, pretrained=PRETRAINED)
    elif parser.depth == 50:
        retinanet = model.resnet50(num_classes=parser.num_classes, pretrained=PRETRAINED)
    elif parser.depth == 101250:
        retinanet = model.resnet101with50weight(num_classes=parser.num_classes, pretrained=PRETRAINED)
    elif parser.depth == 101:
        retinanet = model.resnet101(num_classes=parser.num_classes, pretrained=PRETRAINED)
    elif parser.depth == 152:
        retinanet = model.resnet152(num_classes=parser.num_classes, pretrained=PRETRAINED)
    else:
        raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')

    retinanet = retinanet.cuda()
    retinanet = torch.nn.DataParallel(retinanet).cuda()
    retinanet.training = True

    if parser.lr_choice == 'lr_map':
        lr_now = lr_change_map(1, 0, parser.lr_map)
    elif parser.lr_choice == 'lr_fn':
        lr_now = float(parser.lr_fn['LR_START'])
    elif parser.lr_choice == 'lr_scheduler':
        lr_now = parser.lr

    # optimizer = optim.Adam(retinanet.parameters(), lr=lr_now)
    optimizer = optim.AdamW(retinanet.parameters(), lr=lr_now)
    # optimizer = optim.SGD(retinanet.parameters(), lr=lr_now, momentum=0.9, weight_decay=5e-4)
    # optimizer = optim.SGD(retinanet.parameters(), lr=lr_now)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=PATIENCE, factor=FACTOR, verbose=True)
    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    iteration_loss_path = 'iteration_loss.csv'
    if os.path.isfile(iteration_loss_path):
        os.remove(iteration_loss_path)
    
    epoch_loss_path = 'epoch_loss.csv'
    if os.path.isfile(epoch_loss_path):
        os.remove(epoch_loss_path)
    
    eval_train_path = 'eval_train_result.csv'
    if os.path.isfile(eval_train_path):
        os.remove(eval_train_path)

    eval_val_path = 'eval_val_result.csv'
    if os.path.isfile(eval_val_path):
        os.remove(eval_val_path)

    USE_KAGGLE = True if os.environ.get('KAGGLE_KERNEL_RUN_TYPE', False) else False
    if USE_KAGGLE:
        iteration_loss_path = '/kaggle/working/' + iteration_loss_path
        epoch_loss_path = '/kaggle/working/' + epoch_loss_path
        eval_val_path = '/kaggle/working/' + eval_val_path
        eval_train_path = '/kaggle/working/' + eval_train_path

    with open(epoch_loss_path, 'a+') as epoch_loss_file, \
         open(iteration_loss_path, 'a+') as iteration_loss_file, \
         open(eval_train_path, 'a+') as eval_train_file, \
         open(eval_val_path, 'a+') as eval_val_file:

        epoch_loss_file.write('epoch_num,mean_epoch_loss\n')
        iteration_loss_file.write('epoch_num,iteration,classification_loss,regression_loss,iteration_loss\n')
        eval_train_file.write('epoch_num,map50\n')
        eval_val_file.write('epoch_num,map50\n')

        for epoch_num in range(parser.epochs):
            retinanet.train()
            retinanet.module.freeze_bn()

            epoch_loss = []
            for iter_num, data in enumerate(dataloader_train):
                optimizer.zero_grad()
                classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()
                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()
                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)
                optimizer.step()
                loss_hist.append(float(loss))
                epoch_loss.append(float(loss))

                iteration_loss = np.mean(loss_hist)
                print('\rEpoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
                      epoch_num+1, iter_num+1, float(classification_loss), float(regression_loss), iteration_loss), end=' ' * 50)

                iteration_loss_file.write('{},{},{:1.5f},{:1.5f},{:1.5f}\n'.format(epoch_num+1,
                    epoch_num * steps_pre_epoch + (iter_num+1), float(classification_loss), float(regression_loss),
                    iteration_loss))
                iteration_loss_file.flush()

                del classification_loss
                del regression_loss

            mean_epoch_loss = np.mean(epoch_loss)
            epoch_loss_file.write('{},{:1.5f}\n'.format(epoch_num+1, mean_epoch_loss))
            epoch_loss_file.flush()

            if parser.lr_choice == 'lr_map':
                lr_now = lr_change_map(epoch_num+1, lr_now, parser.lr_map)
                adjust_learning_rate(optimizer, lr_now)
            elif parser.lr_choice == 'lr_fn':
                lr_now = lrfn(epoch_num+1, parser.lr_fn)
                adjust_learning_rate(optimizer, lr_now)
            elif parser.lr_choice == 'lr_scheduler':
                scheduler.step(mean_epoch_loss)

            # if parser.dataset != 'show':
            #     print('Evaluating dataset_train')
            #     coco_eval.evaluate_coco(dataset_train, retinanet, parser.dataset, parser.do_aug, eval_train_file, epoch_num)

            print('Evaluating dataset_val')
            coco_eval.evaluate_coco(dataset_val, retinanet, parser.dataset, parser.do_aug, eval_val_file, epoch_num)
    return parser
Ejemplo n.º 25
0
    def Train(self, num_epochs=2, output_model_name="final_model.pt"):
        self.system_dict["output"]["saved_model"] = output_model_name
        self.system_dict["params"]["num_epochs"] = num_epochs

        for epoch_num in range(num_epochs):
            self.system_dict["local"]["model"].train()
            self.system_dict["local"]["model"].module.freeze_bn()

            epoch_loss = []

            for iter_num, data in enumerate(
                    self.system_dict["local"]["dataloader_train"]):
                try:
                    self.system_dict["local"]["optimizer"].zero_grad()

                    classification_loss, regression_loss = self.system_dict[
                        "local"]["model"]([
                            data['img'].to(
                                self.system_dict["local"]["device"]).float(),
                            data['annot'].to(
                                self.system_dict["local"]["device"])
                        ])

                    classification_loss = classification_loss.mean()
                    regression_loss = regression_loss.mean()

                    loss = classification_loss + regression_loss

                    if bool(loss == 0):
                        continue

                    loss.backward()

                    torch.nn.utils.clip_grad_norm_(
                        self.system_dict["local"]["model"].parameters(), 0.1)

                    self.system_dict["local"]["optimizer"].step()

                    self.system_dict["local"]["loss_hist"].append(float(loss))

                    epoch_loss.append(float(loss))

                    if (iter_num %
                            self.system_dict["params"]["print_interval"] == 0):
                        print(
                            'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                            .format(
                                epoch_num, iter_num,
                                float(classification_loss),
                                float(regression_loss),
                                np.mean(
                                    self.system_dict["local"]["loss_hist"])))

                    del classification_loss
                    del regression_loss

                except Exception as e:
                    print(e)
                    continue

            if (self.system_dict["dataset"]["val"]["status"]):
                print('Evaluating dataset')
                coco_eval.evaluate_coco(
                    self.system_dict["local"]["dataset_val"],
                    self.system_dict["local"]["model"])

            self.system_dict["local"]["scheduler"].step(np.mean(epoch_loss))

            torch.save(self.system_dict["local"]["model"], 'resume.pt')

        self.system_dict["local"]["model"].eval()

        torch.save(self.system_dict["local"]["model"], output_model_name)
Ejemplo n.º 26
0
    def Train(self, num_epochs=2, output_model_name="final_model.pt"):
        self.system_dict["output"]["saved_model"] = output_model_name
        self.system_dict["params"]["num_epochs"] = num_epochs

        #modified.
        file_path = "/content/info_loss.txt"
        with open(file_path, "w") as info_file:
            print("Epoch",
                  "Iteration",
                  "Classification_Loss",
                  "Regression_Loss",
                  "Running_Loss",
                  file=info_file)

        for epoch_num in range(num_epochs):
            self.system_dict["local"]["model"].train()
            self.system_dict["local"]["model"].module.freeze_bn()

            epoch_loss = []

            for iter_num, data in enumerate(
                    self.system_dict["local"]["dataloader_train"]):
                try:
                    self.system_dict["local"]["optimizer"].zero_grad()

                    classification_loss, regression_loss = self.system_dict[
                        "local"]["model"]([
                            data['img'].to(
                                self.system_dict["local"]["device"]).float(),
                            data['annot'].to(
                                self.system_dict["local"]["device"])
                        ])

                    classification_loss = classification_loss.mean()
                    regression_loss = regression_loss.mean()

                    loss = classification_loss + regression_loss

                    if bool(loss == 0):
                        continue

                    loss.backward()

                    torch.nn.utils.clip_grad_norm_(
                        self.system_dict["local"]["model"].parameters(), 0.1)

                    self.system_dict["local"]["optimizer"].step()

                    self.system_dict["local"]["loss_hist"].append(float(loss))

                    epoch_loss.append(float(loss))

                    if (iter_num %
                            self.system_dict["params"]["print_interval"] == 0):
                        print(
                            'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'
                            .format(
                                epoch_num, iter_num,
                                float(classification_loss),
                                float(regression_loss),
                                np.mean(
                                    self.system_dict["local"]["loss_hist"])))

                        #appending to the log file.
                        # with open("/content/info_loss.txt","a") as text:
                        #   print(epoch_num,iter_num,float(classification_loss),float(regression_loss),np.mean(self.system_dict["local"]["loss_hist"]),file=text)

                        #modified.
                        with open(os.path.abspath(file_path), "a") as another:
                            print(epoch_num,
                                  iter_num,
                                  float(classification_loss),
                                  float(regression_loss),
                                  np.mean(
                                      self.system_dict["local"]["loss_hist"]),
                                  file=another)

                    del classification_loss
                    del regression_loss

                except Exception as e:
                    print(e)
                    continue

            if (self.system_dict["dataset"]["val"]["status"]):
                print('Evaluating dataset')
                coco_eval.evaluate_coco(
                    self.system_dict["local"]["dataset_val"],
                    self.system_dict["local"]["model"])

            self.system_dict["local"]["scheduler"].step(np.mean(epoch_loss))

            torch.save(self.system_dict["local"]["model"], 'resume.pt')

        self.system_dict["local"]["model"].eval()

        torch.save(self.system_dict["local"]["model"], output_model_name)
Ejemplo n.º 27
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description="Simple training script for training a RetinaNet network."
    )

    parser.add_argument("--dataset", help="Dataset type, must be one of csv or coco.")
    parser.add_argument("--model", default=None, help="Path to trained model")
    parser.add_argument("--coco_path", help="Path to COCO directory")
    parser.add_argument(
        "--csv_train", help="Path to file containing training annotations (see readme)"
    )
    parser.add_argument(
        "--csv_classes", help="Path to file containing class list (see readme)"
    )
    parser.add_argument(
        "--csv_val",
        help="Path to file containing validation annotations (optional, see readme)",
    )

    parser.add_argument(
        "--depth",
        help="Resnet depth, must be one of 18, 34, 50, 101, 152",
        type=int,
        default=50,
    )
    parser.add_argument("--epochs", help="Number of epochs", type=int, default=100)
    parser.add_argument(
        "--result_dir",
        default="results",
        help="Path to store training results",
        type=str,
    )
    parser.add_argument(
        "--batch_num", default=8, help="Number of samples in a batch", type=int
    )

    parser = parser.parse_args(args)

    print(parser)

    # parameters
    BATCH_SIZE = parser.batch_num
    IMAGE_MIN_SIDE = 1440
    IMAGE_MAX_SIDE = 2560

    # Create the data loaders
    if parser.dataset == "coco":

        if parser.coco_path is None:
            raise ValueError("Must provide --coco_path when training on COCO,")
        # TODO: parameterize arguments for Resizer, and other transform functions
        # resizer: min_side=608, max_side=1024
        dataset_train = CocoDataset(
            parser.coco_path,
            # set_name="train2017",
            set_name="train_images_full",
            transform=transforms.Compose(
                [Normalizer(), Augmenter(), Resizer(passthrough=True),]
            ),
        )
        dataset_val = CocoDataset(
            parser.coco_path,
            # set_name="val2017",
            set_name="val_images_full",
            transform=transforms.Compose([Normalizer(), Resizer(passthrough=True),]),
        )

    elif parser.dataset == "csv":

        if parser.csv_train is None:
            raise ValueError("Must provide --csv_train when training on COCO,")

        if parser.csv_classes is None:
            raise ValueError("Must provide --csv_classes when training on COCO,")

        dataset_train = CSVDataset(
            train_file=parser.csv_train,
            class_list=parser.csv_classes,
            transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]),
        )

        if parser.csv_val is None:
            dataset_val = None
            print("No validation annotations provided.")
        else:
            dataset_val = CSVDataset(
                train_file=parser.csv_val,
                class_list=parser.csv_classes,
                transform=transforms.Compose([Normalizer(), Resizer()]),
            )

    else:
        raise ValueError("Dataset type not understood (must be csv or coco), exiting.")

    sampler = AspectRatioBasedSampler(
        dataset_train, batch_size=BATCH_SIZE, drop_last=False
    )
    dataloader_train = DataLoader(
        dataset_train, num_workers=16, collate_fn=collater, batch_sampler=sampler
    )

    if dataset_val is not None:
        sampler_val = AspectRatioBasedSampler(
            dataset_val, batch_size=BATCH_SIZE, drop_last=False
        )
        dataloader_val = DataLoader(
            dataset_val, num_workers=16, collate_fn=collater, batch_sampler=sampler_val
        )

    # Create the model
    if parser.depth == 18:
        retinanet = model.resnet18(
            num_classes=dataset_train.num_classes(), pretrained=True
        )
    elif parser.depth == 34:
        retinanet = model.resnet34(
            num_classes=dataset_train.num_classes(), pretrained=True
        )
    elif parser.depth == 50:
        retinanet = model.resnet50(
            num_classes=dataset_train.num_classes(), pretrained=True
        )
    elif parser.depth == 101:
        retinanet = model.resnet101(
            num_classes=dataset_train.num_classes(), pretrained=True
        )
    elif parser.depth == 152:
        retinanet = model.resnet152(
            num_classes=dataset_train.num_classes(), pretrained=True
        )
    else:
        raise ValueError("Unsupported model depth, must be one of 18, 34, 50, 101, 152")

    if parser.model:
        retinanet = torch.load(parser.model)

    use_gpu = True

    if use_gpu:
        if torch.cuda.is_available():
            retinanet = retinanet.cuda()

    if torch.cuda.is_available():
        retinanet = torch.nn.DataParallel(retinanet).cuda()
    else:
        retinanet = torch.nn.DataParallel(retinanet)

    retinanet.training = True

    optimizer = optim.Adam(retinanet.parameters(), lr=1e-4)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, patience=3, verbose=True
    )

    loss_hist = collections.deque(maxlen=500)

    retinanet.train()
    retinanet.module.freeze_bn()

    print("Num training images: {}".format(len(dataset_train)))

    for epoch_num in range(parser.epochs):

        retinanet.train()
        retinanet.module.freeze_bn()

        epoch_loss = []
        p_bar = tqdm(dataloader_train)
        for iter_num, data in enumerate(p_bar):
            try:
                optimizer.zero_grad()

                if torch.cuda.is_available():
                    classification_loss, regression_loss = retinanet(
                        [data["img"].cuda().float(), data["annot"]]
                    )
                else:
                    classification_loss, regression_loss = retinanet(
                        [data["img"].float(), data["annot"]]
                    )

                classification_loss = classification_loss.mean()
                regression_loss = regression_loss.mean()

                loss = classification_loss + regression_loss

                if bool(loss == 0):
                    continue

                loss.backward()

                torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)

                optimizer.step()

                loss_hist.append(float(loss))

                epoch_loss.append(float(loss))

                mean_loss = np.mean(loss_hist)
                p_bar.set_description(
                    f"Epoch: {epoch_num} | Iteration: {iter_num} | "
                    f"Class loss: {float(classification_loss.item()):.5f} | "
                    f"Regr loss: {float(regression_loss.item()):.5f} | "
                    f"Running loss: {mean_loss:.5f}"
                )

                del classification_loss
                del regression_loss
            except Exception as e:
                print(e)
                continue

        if parser.dataset == "coco":

            print("Evaluating dataset")

            coco_eval.evaluate_coco(
                dataset_val, retinanet, result_dir=parser.result_dir
            )

        elif parser.dataset == "csv" and parser.csv_val is not None:

            print("Evaluating dataset")

            mAP = csv_eval.evaluate(dataset_val, retinanet)

        scheduler.step(np.mean(epoch_loss))

        # TODO: Fix string formating mix (adopt homogeneous format)
        torch.save(
            retinanet.module,
            f"{parser.result_dir}/"
            + "{}_retinanet_{}.pt".format(parser.dataset, epoch_num),
        )

    retinanet.eval()

    torch.save(retinanet, "model_final.pt")