Ejemplo n.º 1
0
def get_tf_mod(verbose=False):
  """
  :param bool verbose:
  :return: module
  """
  global _tf_mod
  if _tf_mod:
    return _tf_mod
  import platform
  from glob import glob
  from returnn.tf.util.basic import OpCodeCompiler

  # References:
  # https://github.com/kpu/kenlm/blob/master/setup.py
  # https://github.com/kpu/kenlm/blob/master/compile_query_only.sh

  # Collect files.
  assert kenlm_checked_out(), "submodule in %r not checked out?" % kenlm_dir
  files = glob('%s/util/*.cc' % kenlm_dir)
  files += glob('%s/lm/*.cc' % kenlm_dir)
  files += glob('%s/util/double-conversion/*.cc' % kenlm_dir)
  files = [fn for fn in files if not (fn.endswith('main.cc') or fn.endswith('test.cc'))]
  assert files, "submodule in %r not checked out?" % kenlm_dir
  libs = ["z"]
  if platform.system() != 'Darwin':
    libs.append('rt')

  # Put code all together in one big blob.
  src_code = ""
  src_code += _kenlm_src_code_workarounds
  for fn in files:
    f_code = open(fn).read()
    f_code = ''.join([x for x in f_code if ord(x) < 128])  # enforce ASCII
    # We need to do some replacements to not clash symbol names.
    fn_short = os.path.basename(fn).replace(".", "_")
    for word in ["kConverter"]:
      f_code = f_code.replace(word, "%s_%s" % (fn_short, word))
    src_code += "\n// ------------ %s : BEGIN { ------------\n" % os.path.basename(fn)
    # https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
    src_code += "#line 1 \"%s\"\n" % os.path.basename(fn)
    src_code += f_code
    src_code += "\n// ------------ %s : END } --------------\n\n" % os.path.basename(fn)
  src_code += "\n\n// ------------ our code now: ------------\n\n"
  src_code += "#line 1 \"<our code>\"\n"
  src_code += _src_code

  compiler = OpCodeCompiler(
    base_name="KenLM", code_version=1, code=src_code,
    include_paths=(kenlm_dir, kenlm_dir + "/util/double-conversion"),
    c_macro_defines={"NDEBUG": 1, "KENLM_MAX_ORDER": 6, "HAVE_ZLIB": 1},
    ld_flags=["-l%s" % lib for lib in libs],
    is_cpp=True, use_cuda_if_available=False,
    verbose=verbose)
  tf_mod = compiler.load_tf_module()
  assert hasattr(tf_mod, "ken_lm_abs_score_strings"), "content of mod: %r" % (dir(tf_mod),)
  _tf_mod = tf_mod
  return tf_mod
Ejemplo n.º 2
0
def get_tf_mod(verbose=False):
    """
  :param bool verbose:
  :return: module
  """
    global _tf_mod
    if _tf_mod:
        return _tf_mod
    from glob import glob
    from returnn.tf.util.basic import OpCodeCompiler

    # Collect files.
    assert openfst_checked_out(
    ), "submodule in %r not checked out?" % openfst_dir
    files = glob('%s/src/lib/*.cc' % openfst_dir)
    assert files, "submodule in %r not checked out?" % openfst_dir
    files = sorted(files)  # make somewhat deterministic
    libs = []
    if platform.system() != 'Darwin':
        libs.append('rt')

    # Put code all together in one big blob.
    src_code = ""
    for fn in files:
        f_code = open(fn).read()
        f_code = ''.join([x for x in f_code if ord(x) < 128])  # enforce ASCII
        src_code += "\n// ------------ %s : BEGIN { ------------\n" % os.path.basename(
            fn)
        # https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
        src_code += "#line 1 \"%s\"\n" % os.path.basename(fn)
        src_code += f_code
        src_code += "\n// ------------ %s : END } --------------\n\n" % os.path.basename(
            fn)
    src_code += "\n\n// ------------ our code now: ------------\n\n"
    src_code += "#line 1 \"returnn/tf/util/open_fst.py:_src_code\"\n"
    src_code += _src_code

    compiler = OpCodeCompiler(
        base_name="OpenFst",
        code_version=1,
        code=src_code,
        include_paths=("%s/src/include" % openfst_dir, ),
        c_macro_defines={
            "NDEBUG":
            1,  # https://github.com/tensorflow/tensorflow/issues/17316
        },
        ld_flags=["-l%s" % lib for lib in libs],
        is_cpp=True,
        use_cuda_if_available=False,
        verbose=verbose)
    tf_mod = compiler.load_tf_module()
    assert hasattr(
        tf_mod, "open_fst_transition"), "content of mod: %r" % (dir(tf_mod), )
    _tf_mod = tf_mod
    return tf_mod
Ejemplo n.º 3
0
def init_warprnnt(verbose=False):
    """
  Initializes and compiles the library. Caches the TF module.

  :param bool verbose:
  """
    global _tf_mod
    if _tf_mod:
        return
    assert is_checked_out(
    ), "submodule not checked out? Run `git submodule update --init --recursive`"

    # References:
    # https://github.com/HawkAaron/warp-transducer/blob/master/tensorflow_binding/setup.py

    src_files = [
        '%s/src/rnnt_entrypoint.cpp' % submodule_dir,
        '%s/tensorflow_binding/src/warprnnt_op.cc' % submodule_dir
    ]
    assert all([os.path.isfile(f) for f in src_files
                ]), "submodule in %r not checked out?" % warprnnt_dir
    src_code = ""
    for fn in src_files:
        f_code = open(fn).read()
        src_code += "\n// ------------ %s : BEGIN { ------------\n" % os.path.basename(
            fn)
        # https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
        src_code += "#line 1 \"%s\"\n" % os.path.basename(fn)
        src_code += f_code
        src_code += "\n// ------------ %s : END } --------------\n\n" % os.path.basename(
            fn)

    with_cuda = CudaEnv.get_instance().is_available() and is_gpu_available()
    with_omp = sys.platform.startswith("linux")
    compiler = OpCodeCompiler(
        base_name="warprnnt_kernels",
        code_version=1,
        code=src_code,
        include_paths=(submodule_dir + "/include", ),
        c_macro_defines=dict_joined(
            {"WITH_OMP": 1} if with_omp else {"RNNT_DISABLE_OMP": 1},
            {"WARPRNNT_ENABLE_GPU": 1} if with_cuda else {}),
        ld_flags=["-Xcompiler", "-fopenmp"] if with_omp else [],
        is_cpp=True,
        use_cuda_if_available=True,
        verbose=verbose)
    tf_mod = compiler.load_tf_module()
    assert hasattr(tf_mod, "WarpRNNT"), "content of mod: %r" % (dir(tf_mod), )
    _tf_mod = tf_mod
    return tf_mod
Ejemplo n.º 4
0
def init_warprna(verbose=False):
    """
  Initializes and compiles the library. Caches the TF module.

  :param bool verbose:
  """
    global _tf_mod
    if _tf_mod:
        return
    assert is_checked_out(
    ), "submodule not checked out? Run `git submodule update --init --recursive`"
    assert is_tf_cuda_build(), "TF with CUDA support required"

    src_files = [
        '%s/tensorflow_binding/src/warp_rna_op.cc' % submodule_dir,
        '%s/core.cu' % submodule_dir,
    ]
    src_code = ""
    for fn in src_files:
        f_code = open(fn).read()
        src_code += "\n// ------------ %s : BEGIN { ------------\n" % os.path.basename(
            fn)
        # https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
        src_code += "#line 1 \"%s\"\n" % os.path.basename(fn)
        src_code += f_code
        src_code += "\n// ------------ %s : END } --------------\n\n" % os.path.basename(
            fn)

    compiler = OpCodeCompiler(base_name="warprna_kernels",
                              code_version=1,
                              code=src_code,
                              include_paths=(submodule_dir,
                                             os.path.dirname(submodule_dir)),
                              c_macro_defines={"WARPRNA_ENABLE_GPU": 1},
                              is_cpp=True,
                              use_cuda_if_available=True,
                              verbose=verbose)
    tf_mod = compiler.load_tf_module()
    assert hasattr(tf_mod, "WarpRNA"), "content of mod: %r" % (dir(tf_mod), )
    _tf_mod = tf_mod
    return tf_mod
Ejemplo n.º 5
0
def get_filtered_score_op(verbose=False):
    cpp_code = """
  #include "tensorflow/core/framework/op.h"
  #include "tensorflow/core/framework/op_kernel.h"
  #include "tensorflow/core/framework/shape_inference.h"
  #include "tensorflow/core/framework/resource_mgr.h"
  #include "tensorflow/core/framework/resource_op_kernel.h"
  #include "tensorflow/core/framework/tensor.h"
  #include "tensorflow/core/platform/macros.h"
  #include "tensorflow/core/platform/mutex.h"
  #include "tensorflow/core/platform/types.h"
  #include "tensorflow/core/public/version.h"
  #include <cmath>
  #include <map>
  #include <set>
  #include <string>
  #include <tuple>

  using namespace tensorflow;

  REGISTER_OP("GetFilteredScore")
  .Input("prev_str: string")
  .Input("scores: float32")
  //.Input("labels: string")
  .Output("new_scores: float32")
  .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
      c->set_output(0, c->input(1));
      return Status::OK();
  });

  class GetFilteredScoreOp : public OpKernel {
  public:
  using OpKernel::OpKernel;
  void Compute(OpKernelContext* context) override {
      const Tensor* prev_str = &context->input(0);
      const Tensor* scores = &context->input(1);
      //const Tensor* labels = &context->input(2);

      int n_batch = prev_str->shape().dim_size(0);
      int n_beam = prev_str->shape().dim_size(1);

      Tensor* ret;
      OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({n_batch, n_beam}), &ret));
      for(int bat = 0; bat < n_batch; ++bat)
          for(int hyp = 0; hyp < n_beam; ++hyp)
              ret->tensor<float, 2>()(bat, hyp) = scores->tensor<float, 2>()(bat, hyp);

      for(int bat = 0; bat < n_batch; ++bat) {
          std::map<tstring, std::set<int> > new_hyps;  // seq -> set of hyp idx

          for(int hyp = 0; hyp < n_beam; ++hyp) {
              auto& seq_set = new_hyps[prev_str->tensor<tstring, 2>()(bat, hyp)];
              seq_set.insert(hyp);
          }

          for(const auto& items : new_hyps) {
              if(std::get<1>(items).size() > 1) {
                  float best_score = 0.;
                  int best_idx = -1;
                  for(int idx : std::get<1>(items)) {
                      float score = scores->tensor<float, 2>()(bat, idx);
                      if(score > best_score || best_idx == -1) {
                          best_score = score;
                          best_idx = idx;
                      }
                  }

                  float sum_score = 0.;
                  for(int idx : std::get<1>(items)) {
                      float score = scores->tensor<float, 2>()(bat, idx);
                      sum_score += expf(score - best_score);
                  }
                  sum_score = logf(sum_score) + best_score;

                  for(int idx : std::get<1>(items)) {
                      if(idx != best_idx)
                          ret->tensor<float, 2>()(bat, idx) = -std::numeric_limits<float>::infinity();
                      else
                          ret->tensor<float, 2>()(bat, idx) = sum_score;
                  }
              }
          }
      }
  }
  };
  REGISTER_KERNEL_BUILDER(Name("GetFilteredScore").Device(DEVICE_CPU), GetFilteredScoreOp);
  """
    from returnn.tf.util.basic import OpCodeCompiler
    compiler = OpCodeCompiler(base_name="GetFilteredScore",
                              code_version=1,
                              code=cpp_code,
                              is_cpp=True,
                              use_cuda_if_available=False,
                              verbose=verbose)
    tf_mod = compiler.load_tf_module()
    return tf_mod.get_filtered_score