Ejemplo n.º 1
0
    def test_one_cycle_down(self):
        class_count = 4
        x = np.array([4, 2, 3, 1])
        x_max = 4
        x_min = 1
        class_width, \
         class_offset     =  self.class_param(x, class_count)
        hysteresis = class_width * 0.99
        enforce_margin = 0  # First and last data point may be excluded in tp
        use_HCM = 0  # Use 4 point method, not HCM
        use_ASTM = 0  # Use 4 point method, not ASTM
        residual_method = 0  # No processing on residue
        spread_damage = 0  # No damage spreading

        res = rfcnt.rfc(x,
                        class_count=class_count,
                        class_width=class_width,
                        class_offset=class_offset,
                        hysteresis=hysteresis,
                        residual_method=residual_method,
                        enforce_margin=enforce_margin,
                        use_HCM=use_HCM,
                        use_ASTM=use_ASTM,
                        spread_damage=spread_damage)

        self.assertEqual(res["rfm"].sum(), 1)
        self.assertEqual(res["rfm"][2 - 1, 3 - 1], 1)
        self.assertTrue((res["res"].flatten() == [4, 1]).all())
Ejemplo n.º 2
0
    def test_empty_series(self):
        class_count = 100
        x = np.array([])
        x_max = 1
        x_min = -1
        class_width, \
         class_offset     =  self.class_param(x, class_count)
        hysteresis = class_width
        enforce_margin = 0  # First and last data point may be excluded in tp
        use_HCM = 0  # Use 4 point method, not HCM
        use_ASTM = 0  # Use 4 point method, not ASTM
        residual_method = 0  # No processing on residue
        spread_damage = 0  # No damage spreading

        res = rfcnt.rfc(x,
                        class_count=class_count,
                        class_width=class_width,
                        class_offset=class_offset,
                        hysteresis=hysteresis,
                        residual_method=residual_method,
                        enforce_margin=enforce_margin,
                        use_HCM=use_HCM,
                        use_ASTM=use_ASTM,
                        spread_damage=spread_damage)

        self.assertEqual(res["rfm"].sum(), 0)
        self.assertEqual(len(res["res"]), 0)
Ejemplo n.º 3
0
    def test_small_sample(self):
        class_count = 6
        x = np.array([2, 5, 3, 6, 2, 4, 1, 6, 1, 4, 1, 5, 3, 6, 3, 6, 1, 5, 2])
        x_max = x.max()
        x_min = x.min()
        class_width, \
         class_offset     =  self.class_param(x, class_count)
        hysteresis = class_width
        enforce_margin = 0  # First and last data point may be excluded in tp
        use_HCM = 0  # Use 4 point method, not HCM
        use_ASTM = 0  # Use 4 point method, not ASTM
        residual_method = 0  # No processing on residue
        spread_damage = 0  # No damage spreading

        res = rfcnt.rfc(x,
                        class_count=class_count,
                        class_width=class_width,
                        class_offset=class_offset,
                        hysteresis=hysteresis,
                        residual_method=residual_method,
                        enforce_margin=enforce_margin,
                        use_HCM=use_HCM,
                        use_ASTM=use_ASTM,
                        spread_damage=spread_damage)

        self.assertEqual(res["rfm"].sum(), 7)
        self.assertEqual(res["rfm"][5 - 1, 3 - 1], 2)
        self.assertEqual(res["rfm"][6 - 1, 3 - 1], 1)
        self.assertEqual(res["rfm"][1 - 1, 4 - 1], 1)
        self.assertEqual(res["rfm"][2 - 1, 4 - 1], 1)
        self.assertEqual(res["rfm"][1 - 1, 6 - 1], 2)

        self.assertTrue((res["res"].flatten() == [2, 6, 1, 5, 2]).all())
Ejemplo n.º 4
0
    def test_long_series(self):
        try:
            import pandas as pd
        except ImportError as err:
            print("This test requires module 'pandas'!")
            raise err

        class_count = 100
        class_offset = -2025
        class_width = 50
        x = pd.read_csv(os.path.join(self.get_script_path(),
                                     "long_series.csv"),
                        header=None)
        x = x.to_numpy().squeeze()
        hysteresis = class_width
        use_HCM = 0
        enforce_margin = 1  # Enforce first and last data point included in tp
        use_HCM = 0  # Use 4 point method, not HCM
        use_ASTM = 0  # Use 4 point method, not ASTM
        residual_method = 0  # 0=RFC_RES_NONE, 7=RFC_RES_REPEATED
        spread_damage = 1  # 0=RFC_SD_HALF_23, 1=RFC_SD_RAMP_AMPLITUDE_23

        res = rfcnt.rfc(x,
                        class_count=class_count,
                        class_width=class_width,
                        class_offset=class_offset,
                        hysteresis=hysteresis,
                        residual_method=residual_method,
                        enforce_margin=enforce_margin,
                        use_HCM=use_HCM,
                        use_ASTM=use_ASTM,
                        spread_damage=spread_damage)

        # With residuum:    pd == 9.8934e-06 (repeated)
        # Without residuum: pd == 1.1486e-07
        self.assertTrue(
            np.absolute(res["tp"][:, 2].sum() / res["damage"] - 1) < 1e-10)

        spread_damage = 8
        # 7=RFC_SD_TRANSIENT_23, 8=RFC_SD_TRANSIENT_23c

        res = rfcnt.rfc(x,
                        class_count=class_count,
                        class_width=class_width,
                        class_offset=class_offset,
                        hysteresis=hysteresis,
                        residual_method=residual_method,
                        enforce_margin=enforce_margin,
                        use_HCM=use_HCM,
                        use_ASTM=use_ASTM,
                        spread_damage=spread_damage)

        #assert(abs(sum(dh) / pd - 1) < 1e-10)

        self.assertEqual("%.4e" % res["damage"], "1.1486e-07")
        self.assertEqual(res["rfm"].sum(), 640)
        self.assertEqual(len(res["res"]), 10)
        test = np.absolute(
            res["res"].flatten() -
            [0, 142, -609, 2950, -2000, 2159, 1894, 2101, 1991, 2061])
        self.assertTrue(test.sum() < 1e-3)
Ejemplo n.º 5
0
def example_1():
    try:
        import pandas as pd
        import matplotlib.pyplot as plt
        from matplotlib.gridspec import GridSpec
        import seaborn as sns
    except ImportError as err:
        print(
            "This example requires modules 'pandas', 'matplotlib' and 'seaborn!'"
        )
        raise err

    data = pd.read_csv(os.path.join(__get_script_path(), "long_series.csv"),
                       header=None)
    data = data.to_numpy().squeeze()

    class_count = 50
    class_range = data.max() - data.min()
    class_width = class_range / (class_count - 1)
    class_offset = data.min() - class_width / 2

    res = rfcnt.rfc(
        data,
        class_count=class_count,
        class_offset=class_offset,
        class_width=class_width,
        hysteresis=class_width,
        use_HCM=0,
        use_ASTM=0,
        #spread_damage=0,   # RFC_SD_HALF_23
        spread_damage=8,  # RFC_SD_TRANSIENT_23c
        #residual_method=0, # RFC_RES_NONE
        residual_method=7,  # RFC_RES_REPEATED
        wl={
            "sd": 1e3,
            "nd": 1e7,
            "k": 5
        })

    fig = plt.figure(figsize=(14, 10))
    gs = GridSpec(nrows=3, ncols=2, width_ratios=[1, 2])
    ax1 = fig.add_subplot(gs[0, 0])
    sns.heatmap(res["rfm"], cmap="YlOrRd", ax=ax1)
    ax1.invert_yaxis()
    plt.grid(which="both")
    plt.xlabel("Class # (to)")
    plt.ylabel("Class # (from)")
    r = utils.rpplot_prepare(sa=res["rp"][:, 0] / 2, counts=res["rp"][:, 1])
    ax2 = fig.add_subplot(gs[0, 1])
    sns.lineplot(x=r["counts"].cumsum(),
                 y=r["sa"],
                 drawstyle='steps-pre',
                 ci=None,
                 ax=ax2)
    plt.xscale("log")
    plt.ylim(bottom=0, top=2000)
    plt.xlim(left=0.9)
    plt.grid(which="both")
    plt.xlabel("N (log) [1]")
    plt.ylabel("$S_a$")
    ax3 = fig.add_subplot(gs[1, :])
    sns.lineplot(x=np.arange(len(res["dh"])), y=res["dh"].cumsum(), ax=ax3)
    plt.grid(which="both")
    plt.xlabel("Sample #")
    plt.ylabel("Damage (cumulative)")
    ax4 = fig.add_subplot(gs[2, :])
    sns.lineplot(x=np.arange(len(data)), y=data, ax=ax4)
    plt.grid(which="both")
    plt.xlabel("Sample #")
    plt.ylabel("Value")

    fig.tight_layout()
    plt.show()