Ejemplo n.º 1
0
    def __init__(self, model_dir):
        sys.path.append('../../nanonet/rirnet')
        from rirnet_database import RirnetDatabase
        print(sys.path)
        self.model_dir = model_dir

        self.extractor, _ = misc.load_latest(model_dir, 'extractor')
        self.autoencoder, _ = misc.load_latest(model_dir, 'autoencoder')

        self.extractor_args = self.extractor.args()

        use_cuda = not self.extractor_args.no_cuda and torch.cuda.is_available(
        )
        self.device = torch.device("cuda" if use_cuda else "cpu")
        self.extractor.to(self.device)
        self.autoencoder.to(self.device)
        self.kwargs = {
            'num_workers': 1,
            'pin_memory': True
        } if use_cuda else {}

        data_transform = transforms.Compose([
            ToNormalized('../../database/mean.npy', '../../database/std.npy')
        ])
        target_transform = transforms.Compose(
            [ToNegativeLog(), ToUnitNorm(),
             ToTensor()])

        self.extractor_args.val_db_path = '../../database/db-val.csv'

        eval_db = RirnetDatabase(is_training=False,
                                 args=self.extractor_args,
                                 data_transform=data_transform,
                                 target_transform=target_transform)
        self.eval_loader = torch.utils.data.DataLoader(
            eval_db,
            batch_size=self.extractor_args.batch_size,
            shuffle=True,
            **self.kwargs)

        self.audio_anechoic, self.fs = au.read_wav(
            '../../audio/harvard/male.wav')
Ejemplo n.º 2
0
 def target_transform(self):
     target_transform = transforms.Compose([ToNegativeLog(), ToUnitNorm(),  ToTensor()])
     return target_transform