Ejemplo n.º 1
0
def test_agent_stats_partial_fit_and_tuple_env():
    # Define train and evaluation envs
    train_env = (GridWorld, None
                 )  # tuple (constructor, kwargs) must also work in AgentStats

    # Parameters
    params = {"n_episodes": 500}
    horizon = 20

    # Run AgentStats
    stats = AgentStats(DummyAgent,
                       train_env,
                       init_kwargs=params,
                       n_fit=4,
                       eval_horizon=10)
    stats2 = AgentStats(DummyAgent,
                        train_env,
                        init_kwargs=params,
                        n_fit=4,
                        eval_horizon=10)
    # set some writers
    stats.set_writer(0, None)
    stats.set_writer(3, None)

    # Run partial fit
    stats.partial_fit(0.1)
    stats.partial_fit(0.5)
    for agent in stats.fitted_agents:
        assert agent.fraction_fitted == 0.6
    for _ in range(2):
        stats.partial_fit(0.5)
        for agent in stats.fitted_agents:
            assert agent.fraction_fitted == 1.0

    # Run fit
    stats2.fit()

    # learning curves
    plot_episode_rewards([stats], cumulative=True, show=False)

    # compare final policies
    compare_policies([stats], eval_horizon=horizon, n_sim=10, show=False)
Ejemplo n.º 2
0
def test_agent_stats_partial_fit():
    # Define train and evaluation envs
    train_env = GridWorld()
    eval_env = GridWorld()

    # Parameters
    params = {"n_episodes": 500}
    horizon = 20

    # Check DummyAgent
    agent = DummyAgent(train_env, **params)
    agent.fit()
    agent.policy(None)

    # Run AgentStats
    stats = AgentStats(DummyAgent,
                       train_env,
                       init_kwargs=params,
                       n_fit=4,
                       eval_horizon=10)

    # Run partial fit
    stats.partial_fit(0.1)
    stats.partial_fit(0.5)
    for agent in stats.fitted_agents:
        assert agent.fraction_fitted == 0.6
    for _ in range(2):
        stats.partial_fit(0.5)
        for agent in stats.fitted_agents:
            assert agent.fraction_fitted == 1.0

    # learning curves
    plot_episode_rewards([stats], cumulative=True, show=False)

    # compare final policies
    compare_policies([stats],
                     eval_env,
                     eval_horizon=horizon,
                     n_sim=10,
                     show=False)
Ejemplo n.º 3
0
from rlberry.agents.ppo import PPOAgent
from rlberry.envs.benchmarks.ball_exploration import PBall2D
from rlberry.seeding import seeding
from rlberry.stats import AgentStats, plot_episode_rewards, compare_policies

seeding.set_global_seed(1223)

env = PBall2D()
n_episodes = 400
horizon = 100

ppo_params = {}
ppo_params['n_episodes'] = 400
ppo_params['horizon'] = 100
ppo_params['gamma'] = 0.99
ppo_params['learning_rate'] = 0.001
ppo_params['eps_clip'] = 0.2
ppo_params['k_epochs'] = 4

ppo_stats = AgentStats(PPOAgent,
                       env,
                       eval_horizon=100,
                       init_kwargs=ppo_params,
                       n_fit=2)
ppo_stats.partial_fit(0.3)
plot_episode_rewards([ppo_stats], show=False, cumulative=True)
compare_policies([ppo_stats], show=False)
ppo_stats.partial_fit(0.2)
plot_episode_rewards([ppo_stats], show=False, cumulative=True)
compare_policies([ppo_stats], show=True)