def test_keras_style_two_separate_input_spaces(self):
        # Define two input Spaces first. Independently (no container).
        input_space_1 = IntBox(3, add_batch_rank=True)
        input_space_2 = FloatBox(shape=(4,), add_batch_rank=True)

        # One-hot flatten the int tensor.
        flatten_layer_out = ReShape(flatten=True, flatten_categories=True)(input_space_1)
        # Run the float tensor through two dense layers.
        dense_1_out = DenseLayer(units=3, scope="d1")(input_space_2)
        dense_2_out = DenseLayer(units=5, scope="d2")(dense_1_out)
        # Concat everything.
        cat_out = ConcatLayer()(flatten_layer_out, dense_2_out)

        # Use the `outputs` arg to allow your network to trace back the data flow until the input space.
        neural_net = NeuralNetwork(inputs=[input_space_1, input_space_2], outputs=cat_out)

        test = ComponentTest(component=neural_net, input_spaces=dict(inputs=[input_space_1, input_space_2]))

        var_dict = neural_net.variable_registry
        w1_value = test.read_variable_values(var_dict["neural-network/d1/dense/kernel"])
        b1_value = test.read_variable_values(var_dict["neural-network/d1/dense/bias"])
        w2_value = test.read_variable_values(var_dict["neural-network/d2/dense/kernel"])
        b2_value = test.read_variable_values(var_dict["neural-network/d2/dense/bias"])

        # Batch of size=n.
        input_ = [input_space_1.sample(4), input_space_2.sample(4)]

        expected = np.concatenate([  # concat everything
            one_hot(input_[0]),  # int flattening
            dense_layer(dense_layer(input_[1], w1_value, b1_value), w2_value, b2_value)  # float -> 2 x dense
        ], axis=-1)
        out = test.test(("call", input_), expected_outputs=expected)

        test.terminate()
    def test_keras_style_simple_nn(self):
        # Input Space of the network.
        input_space = FloatBox(shape=(3,), add_batch_rank=True)

        # Create a DenseLayer with a fixed `call` method input space for the arg `inputs`.
        output1 = DenseLayer(units=5, activation="linear", scope="a")(input_space)
        # Create a DenseLayer whose `inputs` arg is the resulting DataOpRec of output1's `call` output.
        output2 = DenseLayer(units=7, activation="relu", scope="b")(output1)

        # This will trace back automatically through the given output DataOpRec(s) and add all components
        # on the way to the input-space to this network.
        neural_net = NeuralNetwork(outputs=output2)

        test = ComponentTest(component=neural_net, input_spaces=dict(inputs=input_space))

        # Batch of size=n.
        input_ = input_space.sample(5)
        # Calculate output manually.
        var_dict = neural_net.get_variables("a/dense/kernel", "a/dense/bias", "b/dense/kernel", "b/dense/bias", global_scope=False)
        w1_value = test.read_variable_values(var_dict["a/dense/kernel"])
        b1_value = test.read_variable_values(var_dict["a/dense/bias"])
        w2_value = test.read_variable_values(var_dict["b/dense/kernel"])
        b2_value = test.read_variable_values(var_dict["b/dense/bias"])

        expected = relu(dense_layer(dense_layer(input_, w1_value, b1_value), w2_value, b2_value))

        test.test(("call", input_), expected_outputs=expected, decimals=5)

        test.terminate()
    def test_keras_style_one_container_input_space(self):
        # Define one container input Space.
        input_space = Tuple(IntBox(3), FloatBox(shape=(4,)), add_batch_rank=True)

        # One-hot flatten the int tensor.
        flatten_layer_out = ReShape(flatten=True, flatten_categories=True)(input_space[0])
        # Run the float tensor through two dense layers.
        dense_1_out = DenseLayer(units=3, scope="d1")(input_space[1])
        dense_2_out = DenseLayer(units=5, scope="d2")(dense_1_out)
        # Concat everything.
        cat_out = ConcatLayer()(flatten_layer_out, dense_2_out)

        # Use the `outputs` arg to allow your network to trace back the data flow until the input space.
        # `inputs` is not needed  here as we only have one single input (the Tuple).
        neural_net = NeuralNetwork(outputs=cat_out)

        test = ComponentTest(component=neural_net, input_spaces=dict(inputs=input_space))

        var_dict = neural_net.variable_registry
        w1_value = test.read_variable_values(var_dict["neural-network/d1/dense/kernel"])
        b1_value = test.read_variable_values(var_dict["neural-network/d1/dense/bias"])
        w2_value = test.read_variable_values(var_dict["neural-network/d2/dense/kernel"])
        b2_value = test.read_variable_values(var_dict["neural-network/d2/dense/bias"])

        # Batch of size=n.
        input_ = input_space.sample(4)

        expected = np.concatenate([  # concat everything
            one_hot(input_[0]),  # int flattening
            dense_layer(dense_layer(input_[1], w1_value, b1_value), w2_value, b2_value)  # float -> 2 x dense
        ], axis=-1)
        out = test.test(("call", tuple([input_])), expected_outputs=expected)

        test.terminate()
Ejemplo n.º 4
0
    def test_dense_layer_with_leaky_relu_activation(self):
        input_space = FloatBox(shape=(3,), add_batch_rank=True)

        dense_layer = DenseLayer(units=4, weights_spec=2.0, biases_spec=0.5, activation="lrelu")
        test = ComponentTest(component=dense_layer, input_spaces=dict(inputs=input_space))

        # Batch of size=1 (can increase this to any larger number).
        input_ = np.array([[0.5, 2.0, 1.5], [-1.0, -2.0, -1.5]])
        expected = np.array([[8.5, 8.5, 8.5, 8.5], [-8.5*0.2, -8.5*0.2, -8.5*0.2, -8.5*0.2]],
                            dtype=np.float32)  # 0.2=leaky-relu
        test.test(("apply", input_), expected_outputs=expected)
Ejemplo n.º 5
0
    def test_dense_layer(self):
        # Space must contain batch dimension (otherwise, NNLayer will complain).
        space = FloatBox(shape=(2,), add_batch_rank=True)

        # - fixed 1.0 weights, no biases
        dense_layer = DenseLayer(units=2, weights_spec=1.0, biases_spec=False)
        test = ComponentTest(component=dense_layer, input_spaces=dict(inputs=space))

        # Batch of size=1 (can increase this to any larger number).
        input_ = np.array([[0.5, 2.0]])
        expected = np.array([[2.5, 2.5]])
        test.test(("apply", input_), expected_outputs=expected)
    def test_functional_api_multi_stream_nn(self):
        # Input Space of the network.
        input_space = Dict(
            {
                "img": FloatBox(shape=(6, 6, 3)),  # some RGB img
                "txt": TextBox()  # some text
            },
            add_batch_rank=True,
            add_time_rank=True)

        img, txt = ContainerSplitter("img", "txt")(input_space)
        # Complex NN assembly via our Keras-style functional API.
        # Fold text input into single batch rank.
        folded_text = ReShape(fold_time_rank=True)(txt)
        # String layer will create batched AND time-ranked (individual words) hash outputs (int64).
        string_bucket_out, lengths = StringToHashBucket(
            num_hash_buckets=5)(folded_text)
        # Batched and time-ranked embedding output (floats) with embed dim=n.
        embedding_out = EmbeddingLookup(embed_dim=10,
                                        vocab_size=5)(string_bucket_out)
        # Pass embeddings through a text LSTM and use last output (reduce time-rank).
        string_lstm_out, _ = LSTMLayer(units=2,
                                       return_sequences=False,
                                       scope="lstm-layer-txt")(
                                           embedding_out,
                                           sequence_length=lengths)
        # Unfold to get original time-rank back.
        string_lstm_out_unfolded = ReShape(unfold_time_rank=True)(
            string_lstm_out, txt)

        # Parallel image stream via 1 CNN layer plus dense.
        folded_img = ReShape(fold_time_rank=True, scope="img-fold")(img)
        cnn_out = Conv2DLayer(filters=1, kernel_size=2, strides=2)(folded_img)
        unfolded_cnn_out = ReShape(unfold_time_rank=True,
                                   scope="img-unfold")(cnn_out, img)
        unfolded_cnn_out_flattened = ReShape(
            flatten=True, scope="img-flat")(unfolded_cnn_out)
        dense_out = DenseLayer(units=2,
                               scope="dense-0")(unfolded_cnn_out_flattened)

        # Concat everything.
        concat_out = ConcatLayer()(string_lstm_out_unfolded, dense_out)

        # LSTM output has batch+time.
        main_lstm_out, internal_states = LSTMLayer(
            units=2, scope="lstm-layer-main")(concat_out)

        dense1_after_lstm_out = DenseLayer(units=3,
                                           scope="dense-1")(main_lstm_out)
        dense2_after_lstm_out = DenseLayer(
            units=2, scope="dense-2")(dense1_after_lstm_out)
        dense3_after_lstm_out = DenseLayer(
            units=1, scope="dense-3")(dense2_after_lstm_out)

        # A NN with 2 outputs.
        neural_net = NeuralNetwork(
            outputs=[dense3_after_lstm_out, main_lstm_out, internal_states])

        test = ComponentTest(component=neural_net,
                             input_spaces=dict(inputs=input_space))

        # Batch of size=n.
        sample_shape = (4, 2)
        input_ = input_space.sample(sample_shape)

        out = test.test(("call", input_), expected_outputs=None)
        # Main output (Dense out after LSTM).
        self.assertTrue(out[0].shape == sample_shape +
                        (1, ))  # 1=1 unit in dense layer
        self.assertTrue(out[0].dtype == np.float32)
        # main-LSTM out.
        self.assertTrue(out[1].shape == sample_shape + (2, ))  # 2=2 LSTM units
        self.assertTrue(out[1].dtype == np.float32)
        # main-LSTM internal-states.
        self.assertTrue(out[2][0].shape == sample_shape[:1] +
                        (2, ))  # 2=2 LSTM units
        self.assertTrue(out[2][0].dtype == np.float32)
        self.assertTrue(out[2][1].shape == sample_shape[:1] +
                        (2, ))  # 2=2 LSTM units
        self.assertTrue(out[2][1].dtype == np.float32)

        test.terminate()
    def test_keras_style_complex_multi_stream_nn(self):
        # 3 inputs.
        input_spaces = [
            Dict({
                "img": FloatBox(shape=(6, 6, 3)),
                "int": IntBox(3)
            }, add_batch_rank=True, add_time_rank=True),
            FloatBox(shape=(2,), add_batch_rank=True),
            Tuple(IntBox(2), TextBox(), add_batch_rank=True, add_time_rank=True)
        ]

        # Same NN as in test above, only using some of the sub-Spaces from the input spaces.
        # Tests whether this NN can add automatically the correct splitters.
        folded_text = ReShape(fold_time_rank=True)(input_spaces[2][1])
        # String layer will create batched AND time-ranked (individual words) hash outputs (int64).
        string_bucket_out, lengths = StringToHashBucket(num_hash_buckets=5)(folded_text)
        # Batched and time-ranked embedding output (floats) with embed dim=n.
        embedding_out = EmbeddingLookup(embed_dim=10, vocab_size=5)(string_bucket_out)
        # Pass embeddings through a text LSTM and use last output (reduce time-rank).
        string_lstm_out, _ = LSTMLayer(units=2, return_sequences=False, scope="lstm-layer-txt")(
            embedding_out, sequence_length=lengths
        )
        # Unfold to get original time-rank back.
        string_lstm_out_unfolded = ReShape(unfold_time_rank=True)(string_lstm_out, input_spaces[2][1])

        # Parallel image stream via 1 CNN layer plus dense.
        folded_img = ReShape(fold_time_rank=True, scope="img-fold")(input_spaces[0]["img"])
        cnn_out = Conv2DLayer(filters=1, kernel_size=2, strides=2)(folded_img)
        unfolded_cnn_out = ReShape(unfold_time_rank=True, scope="img-unfold")(cnn_out, input_spaces[0]["img"])
        unfolded_cnn_out_flattened = ReShape(flatten=True, scope="img-flat")(unfolded_cnn_out)
        dense_out = DenseLayer(units=2, scope="dense-0")(unfolded_cnn_out_flattened)

        # Concat everything.
        concat_out = ConcatLayer()(string_lstm_out_unfolded, dense_out)

        # LSTM output has batch+time.
        main_lstm_out, internal_states = LSTMLayer(units=2, scope="lstm-layer-main")(concat_out)

        dense1_after_lstm_out = DenseLayer(units=3, scope="dense-1")(main_lstm_out)
        dense2_after_lstm_out = DenseLayer(units=2, scope="dense-2")(dense1_after_lstm_out)
        dense3_after_lstm_out = DenseLayer(units=1, scope="dense-3")(dense2_after_lstm_out)

        # A NN with 3 outputs.
        neural_net = NeuralNetwork(inputs=input_spaces, outputs=[dense3_after_lstm_out, main_lstm_out, internal_states])

        test = ComponentTest(component=neural_net, input_spaces=dict(inputs=input_spaces))

        # Batch of size=n.
        sample_shape = (4, 2)
        input_ = [input_spaces[0].sample(sample_shape), input_spaces[1].sample(sample_shape[0]),
                  input_spaces[2].sample(sample_shape)]

        out = test.test(("call", tuple(input_)), expected_outputs=None)
        # Main output (Dense out after LSTM).
        self.assertTrue(out[0].shape == sample_shape + (1,))  # 1=1 unit in dense layer
        self.assertTrue(out[0].dtype == np.float32)
        # main-LSTM out.
        self.assertTrue(out[1].shape == sample_shape + (2,))  # 2=2 LSTM units
        self.assertTrue(out[1].dtype == np.float32)
        # main-LSTM internal-states.
        self.assertTrue(out[2][0].shape == sample_shape[:1] + (2,))  # 2=2 LSTM units
        self.assertTrue(out[2][0].dtype == np.float32)
        self.assertTrue(out[2][1].shape == sample_shape[:1] + (2,))  # 2=2 LSTM units
        self.assertTrue(out[2][1].dtype == np.float32)

        test.terminate()