Ejemplo n.º 1
0
dirs = [
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-wider3/run1',
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-wider3-relabeling/run1',
]
f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    "replay_kwargs.fraction_goals_are_env_goals":
    0.5,
    "replay_kwargs.fraction_goals_are_rollout_goals":
    0.2
})
exps = plot.load_exps(dirs, suppress_output=True)
plot.comparison(
    exps,
    ["Final  puck_distance Mean", "Final  hand_distance Mean"],
    vary=[
        "replay_kwargs.fraction_goals_are_env_goals",
        "replay_kwargs.fraction_goals_are_rollout_goals"
    ],
    default_vary={"replay_strategy": "future"},
    smooth=plot.padded_ma_filter(10),
    xlim=(0, 500000),
    ylim=(0.14, 0.26),
    figsize=(6, 5),
    method_order=[2, 1, 0, 3],
)
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(format_func))
Ejemplo n.º 2
0
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

dirs = [
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/state-dense-wider2/run1',
]
f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    'replay_kwargs.fraction_goals_are_env_goals':
    0.0
})
oracle = plot.load_exps(dirs, f, suppress_output=True)
plot.tag_exps(oracle, "name", "oracle")

dirs = [
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-wider3/run1',
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-wider3-relabeling/run1',
]
f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    "replay_kwargs.fraction_goals_are_env_goals":
    0.5,
    "replay_kwargs.fraction_goals_are_rollout_goals":
    0.2
Ejemplo n.º 3
0
import matplotlib
from visualization.grill.config import (
    output_dir,
    ashvin_base_dir,
    format_func,
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

f = plot.filter_by_flat_params(
    {'replay_kwargs.fraction_goals_are_env_goals': 0.5})
exps = plot.load_exps(
    [ashvin_base_dir + "s3doodad/share/reward-reaching-sweep"],
    f,
    suppress_output=True)

plot.comparison(
    exps,
    "Final  distance Mean",
    vary=["reward_params.type"],
    # smooth=plot.padded_ma_filter(10),
    ylim=(0.0, 0.2),
    xlim=(0, 10000),
    # method_order=[1, 0, 2]),
    figsize=(6, 4),
)
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(format_func))
plt.xlabel("Timesteps")
plt.ylabel("Final Distance to Goal")
Ejemplo n.º 4
0
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    'replay_kwargs.fraction_goals_are_env_goals':
    0.5
})

oracle = plot.load_exps(
    [ashvin_base_dir + "s3doodad/share/reacher/reacher-baseline-oracle"],
    suppress_output=True)
plot.tag_exps(oracle, "name", "oracle")

ours = plot.load_exps(
    [ashvin_base_dir + "s3doodad/share/reacher/reacher-main-results-ours"],
    suppress_output=True)
plot.tag_exps(ours, "name", "ours")
f = plot.filter_by_flat_params({
    'replay_kwargs.fraction_goals_are_env_goals': 0.0,
    'reward_params.type': 'latent_distance'
})

her = plot.load_exps(
    [ashvin_base_dir + "s3doodad/share/reward-reaching-sweep"],
    f,
Ejemplo n.º 5
0
import matplotlib
from visualization.grill.config import (
    output_dir,
    ashvin_base_dir,
    format_func,
    our_method_name,
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

# f = plot.filter_by_flat_params({'algorithm': 'Ours'})
ours = plot.load_exps([ashvin_base_dir + "s3doodad/share/real-reacher/ours"],
                      suppress_output=True)
plot.tag_exps(ours, "name", "ours")
# f = plot.filter_by_flat_params({'algorithm': 'Sparse-HER', 'reward_params.epsilon': 0.1})
her = plot.load_exps([ashvin_base_dir + "s3doodad/share/real-reacher/her"],
                     suppress_output=True)
plot.tag_exps(her, "name", "her")
# f = plot.filter_by_flat_params({'algorithm': 'TDM'})
oracle = plot.load_exps(
    [ashvin_base_dir + "s3doodad/share/real-reacher/oracle"],
    suppress_output=True)
plot.tag_exps(oracle, "name", "oracle")

plot.comparison(
    ours + her + oracle,
    "Test Final End Effector Distance from Target Mean",
    vary=["name"],
Ejemplo n.º 6
0
import matplotlib
from visualization.grill.config import (
    output_dir,
    ashvin_base_dir,
    format_func,
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

exps = plot.load_exps([
    ashvin_base_dir +
    "s3doodad/share/reacher/reacher-abalation-resample-strategy"
],
                      suppress_output=True)
# plot.tag_exps(exps, "name", "oracle")
plot.comparison(
    exps,
    "Final  distance Mean",
    vary=[
        "replay_kwargs.fraction_goals_are_env_goals",
        "replay_kwargs.fraction_goals_are_rollout_goals"
    ],
    #           smooth=plot.padded_ma_filter(10),
    ylim=(0.04, 0.2),
    xlim=(0, 10000),
    method_order=[2, 1, 0, 3],
    figsize=(6, 4))
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(format_func))
Ejemplo n.º 7
0
import matplotlib
from visualization.grill.config import (
    output_dir,
    ashvin_base_dir,
    format_func,
    our_method_name,
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

dirs = [
    ashvin_base_dir + 's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-multi-logprob/run1', ]
logprob = plot.load_exps(dirs, suppress_output=True)
plot.tag_exps(logprob, "name", "logprob")

f = plot.filter_by_flat_params(
    {'replay_kwargs.fraction_goals_are_env_goals': 0.5})
exps = plot.load_exps([
    ashvin_base_dir + 's3doodad/share/steven/pushing-multipushing/multipusher-reward-variants'],
    f, suppress_output=True)
plot.tag_exps(exps, "name", "pixel")

dirs = [
    ashvin_base_dir + 's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-multi3/run1',
]
f = plot.filter_by_flat_params({
                                   'algo_kwargs.num_updates_per_env_step': 4,
                                   "replay_kwargs.fraction_goals_are_env_goals": 0.5
Ejemplo n.º 8
0
    our_method_name,
    configure_matplotlib,
)
import matplotlib.pyplot as plt
from rlkit.visualization import plot_util as plot

configure_matplotlib(matplotlib)

dirs = [
    ashvin_base_dir + 's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-multi3/run1',
]
f = plot.filter_by_flat_params({
                                   'algo_kwargs.num_updates_per_env_step': 4,
                                   "replay_kwargs.fraction_goals_are_env_goals": 0.5
                               })
ours = plot.load_exps(dirs, f, suppress_output=True)
plot.tag_exps(ours, "name", "ours")

dirs = [
    ashvin_base_dir + 's3doodad/ashvin/vae/fixed3/sawyer-pusher/state-dense-multi1/run1',
]
f = plot.filter_by_flat_params({
                                   'replay_kwargs.fraction_goals_are_env_goals': 0.5,
                                   'algo_kwargs.reward_scale': 1e-4
                               })
oracle = plot.load_exps(dirs, f, suppress_output=True)
plot.tag_exps(oracle, "name", "oracle")

# dsae = plot.load_exps(
#     [ashvin_base_dir + 's3doodad/share/steven/pushing-multipushing/multipusher-reward-variants-spatial'],
#     plot.filter_by_flat_params({'training_mode': 'test'}),
Ejemplo n.º 9
0
configure_matplotlib(matplotlib)

dirs = [
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-multi3/run1',
]
f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    'rdim':
    16,
    'replay_kwargs.fraction_goals_are_rollout_goals':
    0.2
})
her = plot.load_exps(dirs, f, suppress_output=True)

dirs = [
    ashvin_base_dir +
    's3doodad/ashvin/vae/fixed3/sawyer-pusher/vae-dense-multi3/run1',
]
f = plot.filter_by_flat_params({
    'algo_kwargs.num_updates_per_env_step':
    4,
    'rdim':
    16,
    'replay_kwargs.fraction_goals_are_rollout_goals':
    1.0,
    'replay_kwargs.fraction_goals_are_env_goals':
    0.0
})