Ejemplo n.º 1
0
 def test_leave_pair_out(self):
     #compares holdout and leave-pair-out
     start = [0, 2, 3, 5]
     end = [1, 3, 6, 8]
     for X in [self.Xtrain1, self.Xtrain2]:
         for Y in [self.Ytrain1, self.Ytrain2]:
             #LPO with linear kernel
             rls1 = RLS(X, Y, regparam = 7.0, bias=3.0)
             lpo_start, lpo_end = rls1.leave_pair_out(start, end)
             ho_start, ho_end = [], []
             for i in range(len(start)):
                 P = rls1.holdout([start[i], end[i]])
                 ho_start.append(P[0])
                 ho_end.append(P[1])
             ho_start = np.array(ho_start)
             ho_end = np.array(ho_end)
             assert_allclose(ho_start, lpo_start)
             assert_allclose(ho_end, lpo_end)
             #LPO Gaussian kernel
             rls1 = RLS(X, Y, regparam = 11.0, kenerl="PolynomialKernel", coef0=1, degree=3)
             lpo_start, lpo_end = rls1.leave_pair_out(start, end)
             ho_start, ho_end = [], []
             for i in range(len(start)):
                 P = rls1.holdout([start[i], end[i]])
                 ho_start.append(P[0])
                 ho_end.append(P[1])
             ho_start = np.array(ho_start)
             ho_end = np.array(ho_end)
             assert_allclose(ho_start, lpo_start)
             assert_allclose(ho_end, lpo_end)
Ejemplo n.º 2
0
 def test_leave_pair_out(self):
     #compares holdout and leave-pair-out
     start = [0, 2, 3, 5]
     end = [1, 3, 6, 8]
     for X in [self.Xtrain1, self.Xtrain2]:
         for Y in [self.Ytrain1, self.Ytrain2]:
             #LPO with linear kernel
             rls1 = RLS(X, Y, regparam=7.0, bias=3.0)
             lpo_start, lpo_end = rls1.leave_pair_out(start, end)
             ho_start, ho_end = [], []
             for i in range(len(start)):
                 P = rls1.holdout([start[i], end[i]])
                 ho_start.append(P[0])
                 ho_end.append(P[1])
             ho_start = np.array(ho_start)
             ho_end = np.array(ho_end)
             assert_allclose(ho_start, lpo_start)
             assert_allclose(ho_end, lpo_end)
             #LPO Gaussian kernel
             rls1 = RLS(X,
                        Y,
                        regparam=11.0,
                        kenerl="PolynomialKernel",
                        coef0=1,
                        degree=3)
             lpo_start, lpo_end = rls1.leave_pair_out(start, end)
             ho_start, ho_end = [], []
             for i in range(len(start)):
                 P = rls1.holdout([start[i], end[i]])
                 ho_start.append(P[0])
                 ho_end.append(P[1])
             ho_start = np.array(ho_start)
             ho_end = np.array(ho_end)
             assert_allclose(ho_start, lpo_start)
             assert_allclose(ho_end, lpo_end)
Ejemplo n.º 3
0
def train_rls():
    X_train, Y_train, foo = read_svmlight("a1a.t")
    X_test, Y_test, foo = read_svmlight("a1a", X_train.shape[1])
    lpo_aucs = []
    test_aucs = []
    for i in range(1000):
        X_small = X_train[i * 30:i * 30 + 30]
        Y_small = Y_train[i * 30:i * 30 + 30]
        pairs_start = []
        pairs_end = []
        for i in range(len(Y_small)):
            for j in range(len(Y_small)):
                if Y_small[i] == 1. and Y_small[j] == -1.:
                    pairs_start.append(i)
                    pairs_end.append(j)
        learner = RLS(X_small, Y_small)
        pairs_start = np.array(pairs_start)
        pairs_end = np.array(pairs_end)
        P_start, P_end = learner.leave_pair_out(pairs_start, pairs_end)
        lpo_a = np.mean(P_start > P_end + 0.5 * (P_start == P_end))
        P_test = learner.predict(X_test)
        test_a = auc(Y_test, P_test)
        lpo_aucs.append(lpo_a)
        test_aucs.append(test_a)
    print("mean lpo over auc over 1000 repetitions: %f" % np.mean(lpo_aucs))
    print("mean test auc over 1000 repetitions %f" % np.mean(test_aucs))
Ejemplo n.º 4
0
def lpo_core(X,y, regparam):
    start, end = [], []
    for i in range(X.shape[0]-1):
        for j in range(i+1, X.shape[0]):
            start.append(i)
            end.append(j)
    rls = RLS(X,y, regparam=regparam, kernel="GaussianKernel", gamma=0.01)
    pred0, pred1 = rls.leave_pair_out(start, end)
    return pred0, pred1
Ejemplo n.º 5
0
def lpo_core(X, y, regparam):
    start, end = [], []
    for i in range(X.shape[0] - 1):
        for j in range(i + 1, X.shape[0]):
            start.append(i)
            end.append(j)
    rls = RLS(X, y, regparam=regparam, kernel="GaussianKernel", gamma=0.01)
    pred0, pred1 = rls.leave_pair_out(start, end)
    return pred0, pred1
Ejemplo n.º 6
0
 def testRLS(self):
     
     print
     print
     print
     print
     print("Testing the cross-validation routines of the RLS module.")
     print
     print
     floattype = np.float64
     
     m, n = 400, 100
     Xtrain = np.random.rand(m, n)
     K = np.dot(Xtrain, Xtrain.T)
     ylen = 2
     Y = np.zeros((m, ylen), dtype=floattype)
     Y = np.random.rand(m, ylen)
     
     hoindices = [45]
     hoindices2 = [45, 50]
     hoindices3 = [45, 50, 55]
     hocompl = list(set(range(m)) - set(hoindices))
     
     Kho = K[np.ix_(hocompl, hocompl)]
     Yho = Y[hocompl]
     
     kwargs = {}
     kwargs['Y'] = Y
     kwargs['X'] = K
     kwargs['kernel'] = 'PrecomputedKernel'
     dualrls = RLS(**kwargs)
     
     kwargs = {}
     kwargs["X"] = Xtrain
     kwargs["Y"] = Y
     kwargs["bias"] = 0.
     primalrls = RLS(**kwargs)
     
     kwargs = {}
     kwargs['Y'] = Yho
     kwargs['X'] = Kho
     kwargs['kernel'] = 'PrecomputedKernel'
     dualrls_naive = RLS(**kwargs)
     
     testkm = K[np.ix_(hocompl, hoindices)]
     trainX = Xtrain[hocompl]
     testX = Xtrain[hoindices]
     kwargs = {}
     kwargs['Y'] = Yho
     kwargs['X'] = trainX
     kwargs["bias"] = 0.
     primalrls_naive = RLS(**kwargs)
     
     loglambdas = range(-5, 5)
     for j in range(0, len(loglambdas)):
         regparam = 2. ** loglambdas[j]
         print
         print("Regparam 2^%1d" % loglambdas[j])
         
         dumbho = np.dot(testkm.T, np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])), Yho))
         dumbho = np.squeeze(dumbho)
         print(str(dumbho) + ' Dumb HO (dual)')
         
         dualrls_naive.solve(regparam)
         predho1 = dualrls_naive.predictor.predict(testkm.T)
         print(str(predho1) + ' Naive HO (dual)')
         
         dualrls.solve(regparam)
         predho2 = dualrls.holdout(hoindices)
         print(str(predho2) + ' Fast HO (dual)')
         
         dualrls.solve(regparam)
         predho = dualrls.leave_one_out()[hoindices[0]]
         print(str(predho) + ' Fast LOO (dual)')
         
         primalrls_naive.solve(regparam)
         predho3 = primalrls_naive.predictor.predict(testX)
         print(str(predho3) + ' Naive HO (primal)')
         
         primalrls.solve(regparam)
         predho4 = primalrls.holdout(hoindices)
         print(str(predho4) + ' Fast HO (primal)')
         for predho in [predho1, predho2, predho3, predho4]:
             self.assertEqual(dumbho.shape, predho.shape)
             assert_allclose(dumbho, predho)
             #for row in range(predho.shape[0]):
             #    for col in range(predho.shape[1]):
             #        self.assertAlmostEqual(dumbho[row,col],predho[row,col])
         primalrls.solve(regparam)
         predho = primalrls.leave_one_out()[hoindices[0]]
         print(str(predho) + ' Fast LOO (primal)')
     print()
     hoindices = range(100, 300)
     hocompl = list(set(range(m)) - set(hoindices))
     
     Kho = K[np.ix_(hocompl, hocompl)]
     Yho = Y[hocompl]
     testkm = K[np.ix_(hocompl, hoindices)]
     
     dumbho = np.dot(testkm.T, np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])), Yho))
     
     kwargs = {}
     kwargs['Y'] = Y
     kwargs['X'] = Xtrain
     dualrls.solve(regparam)
     predho2 = dualrls.holdout(hoindices2)
     print(str(predho2) + ' Fast HO')
     hopred = dualrls.leave_pair_out(np.array([hoindices2[0], 4, 6]), np.array([hoindices2[1], 5, 7]))
     print(str(hopred[0][0]) + '\n' + str(hopred[1][0]) + ' Fast LPO')
Ejemplo n.º 7
0
    def testRLS(self):

        print
        print
        print
        print
        print("Testing the cross-validation routines of the RLS module.")
        print
        print
        floattype = np.float64

        m, n = 400, 100
        Xtrain = np.random.rand(m, n)
        K = np.dot(Xtrain, Xtrain.T)
        ylen = 2
        Y = np.zeros((m, ylen), dtype=floattype)
        Y = np.random.rand(m, ylen)

        hoindices = [45]
        hoindices2 = [45, 50]
        hoindices3 = [45, 50, 55]
        hocompl = list(set(range(m)) - set(hoindices))

        Kho = K[np.ix_(hocompl, hocompl)]
        Yho = Y[hocompl]

        kwargs = {}
        kwargs['Y'] = Y
        kwargs['X'] = K
        kwargs['kernel'] = 'PrecomputedKernel'
        dualrls = RLS(**kwargs)

        kwargs = {}
        kwargs["X"] = Xtrain
        kwargs["Y"] = Y
        kwargs["bias"] = 0.
        primalrls = RLS(**kwargs)

        kwargs = {}
        kwargs['Y'] = Yho
        kwargs['X'] = Kho
        kwargs['kernel'] = 'PrecomputedKernel'
        dualrls_naive = RLS(**kwargs)

        testkm = K[np.ix_(hocompl, hoindices)]
        trainX = Xtrain[hocompl]
        testX = Xtrain[hoindices]
        kwargs = {}
        kwargs['Y'] = Yho
        kwargs['X'] = trainX
        kwargs["bias"] = 0.
        primalrls_naive = RLS(**kwargs)

        loglambdas = range(-5, 5)
        for j in range(0, len(loglambdas)):
            regparam = 2.**loglambdas[j]
            print
            print("Regparam 2^%1d" % loglambdas[j])

            dumbho = np.dot(
                testkm.T,
                np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])), Yho))
            dumbho = np.squeeze(dumbho)
            print(str(dumbho) + ' Dumb HO (dual)')

            dualrls_naive.solve(regparam)
            predho1 = dualrls_naive.predictor.predict(testkm.T)
            print(str(predho1) + ' Naive HO (dual)')

            dualrls.solve(regparam)
            predho2 = dualrls.holdout(hoindices)
            print(str(predho2) + ' Fast HO (dual)')

            dualrls.solve(regparam)
            predho = dualrls.leave_one_out()[hoindices[0]]
            print(str(predho) + ' Fast LOO (dual)')

            primalrls_naive.solve(regparam)
            predho3 = primalrls_naive.predictor.predict(testX)
            print(str(predho3) + ' Naive HO (primal)')

            primalrls.solve(regparam)
            predho4 = primalrls.holdout(hoindices)
            print(str(predho4) + ' Fast HO (primal)')
            for predho in [predho1, predho2, predho3, predho4]:
                self.assertEqual(dumbho.shape, predho.shape)
                assert_allclose(dumbho, predho)
                #for row in range(predho.shape[0]):
                #    for col in range(predho.shape[1]):
                #        self.assertAlmostEqual(dumbho[row,col],predho[row,col])
            primalrls.solve(regparam)
            predho = primalrls.leave_one_out()[hoindices[0]]
            print(str(predho) + ' Fast LOO (primal)')
        print()
        hoindices = range(100, 300)
        hocompl = list(set(range(m)) - set(hoindices))

        Kho = K[np.ix_(hocompl, hocompl)]
        Yho = Y[hocompl]
        testkm = K[np.ix_(hocompl, hoindices)]

        dumbho = np.dot(
            testkm.T, np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])),
                             Yho))

        kwargs = {}
        kwargs['Y'] = Y
        kwargs['X'] = Xtrain
        dualrls.solve(regparam)
        predho2 = dualrls.holdout(hoindices2)
        print(str(predho2) + ' Fast HO')
        hopred = dualrls.leave_pair_out(np.array([hoindices2[0], 4, 6]),
                                        np.array([hoindices2[1], 5, 7]))
        print(str(hopred[0][0]) + '\n' + str(hopred[1][0]) + ' Fast LPO')