Ejemplo n.º 1
0
# loading saved data
for temp_option in range(0, temperature_change_options_length):
    # selecting the temperature change
    min_temperature = temperature_change_options[temp_option]

    mean_ec_y_array[temp_option+1] = np.loadtxt("saved_data/mean_EC_yvalue_"+str(min_temperature)+"_degree_warming_cmip6cmip5.csv", delimiter=",")
    lower_ec_limit_array[temp_option+1] = np.loadtxt("saved_data/EC_lower_limit_"+str(min_temperature)+"_degree_warming_cmip6cmip5.csv", delimiter=",")
    upper_ec_limit_array[temp_option+1] = np.loadtxt("saved_data/EC_upper_limit_"+str(min_temperature)+"_degree_warming_cmip6cmip5.csv", delimiter=",")


#%% Observational soil carbon

# regrid cube
regrid_cube = iris.load_cube('/home/links/rmv203/obs_datasets/Tair_WFDEI_ann.nc')
regrid_cube = time_average(regrid_cube)
regrid_cube.coord('latitude').guess_bounds()
regrid_cube.coord('longitude').guess_bounds()
regrid_modelcube = regrid_cube.copy()

# observational land frac
landfraction_obs = combine_netCDF_observations('/home/links/rmv203/obs_datasets/luc4c_landmask.nc', 'mask')

# observational soil carbon
observational_Cs_data = np.load('saved_variables/observational_Cs_data.npy')
observational_Cs_mask = np.load('saved_variables/observational_Cs_mask.npy')
observational_Cs0 = np.ma.masked_array(observational_Cs_data, mask=observational_Cs_mask)
# global total of observational soil carbon
observational_Cs0_cube = numpy_to_cube(observational_Cs0, regrid_modelcube, 2)
observational_Cs0_cube = global_total(observational_Cs0_cube, landfrac=landfraction_obs, latlon_cons=None)
observational_Cs0_data = observational_Cs0_cube.data
Ejemplo n.º 2
0
        # Heterotrophic Respiration (RH)
        rh_historical_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/rh_Lmon_'+model+'_historical*', 'heterotrophic_respiration_carbon_flux', model)
        rh_historical_cube = open_netCDF(rh_historical_cube)
        # Soil Carbon (cSoil)
        cSoil_historical_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/cSoil_Lmon_'+model+'_historical*', 'soil_carbon_content', model)
        cSoil_historical_cube = open_netCDF(cSoil_historical_cube)
        # Near Surface Air Temperature (tas)
        tas_historical_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/tas_Amon_'+model+'_historical*', 'air_temperature', model)
        tas_historical_cube = open_netCDF(tas_historical_cube)

        # Select historical time period
        rh_historical_cube = select_time(rh_historical_cube, lower_historical, upper_historical)
        cSoil_historical_cube = select_time(cSoil_historical_cube, lower_historical, upper_historical)
        tas_historical_cube = select_time(tas_historical_cube, lower_historical, upper_historical)
        # Time average
        rh_historical_cube = time_average(rh_historical_cube)
        cSoil_historical_cube = time_average(cSoil_historical_cube)
        tas_historical_cube = time_average(tas_historical_cube)
        # Converting from cubes to numpy_arrays
        rh_historical_data = rh_historical_cube.data
        cSoil_historical_data = cSoil_historical_cube.data
        tas_historical_data = tas_historical_cube.data

        # save to use later
        historical_tas_save_data = tas_historical_data - 273.15
        cSoil_historical_save_cube = cSoil_historical_cube.copy()
        historical_rh_save_data = rh_historical_data*86400.*365.


        # Calculating Soil Turnover Time (tau_s)
        tau_s_data_historical = cSoil_historical_data / (rh_historical_data*86400.*365.)
Ejemplo n.º 3
0
    cSoil_historical_cube = combine_netCDF_time_overlap(
        '/home/rmv203/cmip6_data/cSoil_Emon_' + model + '_historical*', model)
    cSoil_historical_cube = open_netCDF(cSoil_historical_cube)
    # Near Surface Air Temperature (tas)
    tas_historical_cube = combine_netCDF_time_overlap(
        '/home/rmv203/cmip6_data/tas_Amon_' + model + '_historical*', model)
    tas_historical_cube = open_netCDF(tas_historical_cube)
    # Select historical time period
    rh_historical_cube = select_time(rh_historical_cube, lower_historical,
                                     upper_historical)
    cSoil_historical_cube = select_time(cSoil_historical_cube,
                                        lower_historical, upper_historical)
    tas_historical_cube = select_time(tas_historical_cube, lower_historical,
                                      upper_historical)
    # Time average
    rh_historical_time_av_cube = time_average(rh_historical_cube)
    cSoil_historical_time_av_cube = time_average(cSoil_historical_cube)
    tas_historical_time_av_cube = time_average(tas_historical_cube)
    # Converting from cubes to numpy_arrays
    rh_historical_time_av_data = rh_historical_time_av_cube.data
    cSoil_historical_time_av_data = cSoil_historical_time_av_cube.data
    tas_historical_time_av_data = tas_historical_time_av_cube.data

    # Calculating Soil Turnover Time
    tau_s_data_historical = cSoil_historical_time_av_data / (
        rh_historical_time_av_data * 86400. * 365.)
    tau_s_masked_data_historical = ma.masked_where(
        np.logical_or(tau_s_data_historical < 1, tau_s_data_historical > 1e4),
        tau_s_data_historical)

    #%%
Ejemplo n.º 4
0
#
observational_rh_data = np.load('saved_variables/observational_rh_data.npy')
observational_rh_mask = np.load('saved_variables/observational_rh_mask.npy')
observational_rh = np.ma.masked_array(observational_rh_data,
                                      mask=observational_rh_mask)

# loading observational land fraction
landfraction_obs = combine_netCDF_observations(
    '/home/links/rmv203/obs_datasets/luc4c_landmask.nc', 'mask')

#%%

# Loading regrid cube
regrid_cube = iris.load_cube(
    '/home/links/rmv203/obs_datasets/Tair_WFDEI_ann.nc')
regrid_cube = time_average(regrid_cube)
regrid_cube.coord('latitude').guess_bounds()
regrid_cube.coord('longitude').guess_bounds()
regrid_modelcube = regrid_cube.copy()
# correct lat and lon dimensions
n_lat = regrid_cube.coord('latitude').points
n_lon = regrid_cube.coord('longitude').points

#%%
# inputs

lower_historical = 1995
upper_historical = 2005

region_global = [0, 360, -90, 90]
Ejemplo n.º 5
0
    'xtick.color': 'k',
    'ytick.color': 'k',
    'axes.labelsize': 34,
    'xtick.labelsize': 34,
    'ytick.labelsize': 34,
    'font.size': 34,
    'text.usetex': False,
    "svg.fonttype": 'none'
}
plt.rcParams.update(params)

#%% regrid cube

regrid_cube = iris.load_cube(
    '/home/links/rmv203/obs_datasets/Tair_WFDEI_ann.nc')
regrid_cube = time_average(regrid_cube)
regrid_cube.coord('latitude').guess_bounds()
regrid_cube.coord('longitude').guess_bounds()
regrid_modelcube = regrid_cube
# correct lat and lon dimensions
n_lat = regrid_cube.coord('latitude').points
n_lon = regrid_cube.coord('longitude').points

#%% Observational datasets

# Soil carbon
# ncscd
ncscd_file = Dataset(
    '/home/links/rmv203/obs_datasets/NCSCDV22_soilc_0.5x0.5.nc')
ncscd_data = ncscd_file.variables['soilc'][:]
# hwsd
Ejemplo n.º 6
0
        print(rcp, model)
        

        #%% modelled historical

        # Soil Carbon (cSoil)
        cSoil_historical_cube_new = combine_netCDF_cmip5('/home/rmv203/cmip5_data/cSoil_Lmon_'+model+'_historical*', 'soil_carbon_content', model)
        cSoil_historical_cube_new = open_netCDF(cSoil_historical_cube_new)
        # Near Surface Air Temperature (tas)
        tas_historical_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/tas_Amon_'+model+'_historical*', 'air_temperature', model)
        tas_historical_cube = open_netCDF(tas_historical_cube)
        # Select historical time period
        cSoil_historical_cube_new = select_time(cSoil_historical_cube_new, lower_historical, upper_historical)
        tas_historical_cube = select_time(tas_historical_cube, lower_historical, upper_historical)
        # Time average
        cSoil_historical_time_av_cube_new = time_average(cSoil_historical_cube_new)
        tas_historical_cube = time_average(tas_historical_cube)
        tas_historical_data = tas_historical_cube.data

        # Converting from cubes to numpy_arrays
        cSoil_historical_time_av_data_new = cSoil_historical_time_av_cube_new.data


        #%%  Modelled Future

        # Soil Carbon (cSoil)
        cSoil_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/cSoil_Lmon_'+model+'_'+rcp+'_*', 'soil_carbon_content', model)
        cSoil_cube = open_netCDF(cSoil_cube)
        # Near Surface Air Temperature (tas)
        tas_cube = combine_netCDF_cmip5('/home/rmv203/cmip5_data/tas_Amon_'+model+'_'+rcp+'_*', 'air_temperature', model)
        tas_cube = open_netCDF(tas_cube)