Ejemplo n.º 1
0
def test_real(n_updates=100):
    """ Test RNN with real-valued outputs. """
    n_hidden = 10
    n_in = 5
    n_out = 3
    n_steps = 10
    n_seq = 1000

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    print 'seq1'
    print seq

    targets = np.zeros((n_seq, n_steps, n_out))
    targets[:, 1:, 0] = seq[:, :-1, 3]  # delayed 1
    targets[:, 1:, 1] = seq[:, :-1, 2]  # delayed 1
    targets[:, 2:, 2] = seq[:, :-2, 0]  # delayed 2

    targets += 0.01 * np.random.standard_normal(targets.shape)
    print 'targets'
    print targets

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    print 'seq2'
    print seq
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=100)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=20)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh')

    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y)], h=model.rnn.h)
    print model

    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    plt.close('all')
    fig = plt.figure()
    ax1 = plt.subplot(211)
    plt.plot(seq[0])
    ax1.set_title('input')
    ax2 = plt.subplot(212)
    true_targets = plt.plot(targets[0])

    guess = model.predict(seq[0])
    guessed_targets = plt.plot(guess, linestyle='--')
    for i, x in enumerate(guessed_targets):
        x.set_color(true_targets[i].get_color())
    ax2.set_title('solid: true output, dashed: model output')
Ejemplo n.º 2
0
def test_Oscillator(n_updates=50):
    """ Test RNN with real-valued outputs. """
    n_hidden = 250
    n_in = 1
    n_out = 2
    n_steps = 200
    n_seq = 1
    fracZero = 2

    np.random.seed(np.random.randint(200)+52)
    baseFreq = np.linspace(0,numpy.pi*4,n_steps)
    seq = np.zeros((n_seq,n_steps,n_in))
    #sigDecay = np.zeros((n_steps/2))
    #sigDecay[:(n_steps/fracZero)/2] = np.linspace(1,0,(n_steps/fracZero)/2)
    #seqSig = sigDecay * np.cos(baseFreq)/2 + 1
    #seq[:,n_steps/4:n_steps*3/4,0] = np.tile(seqSig,(n_seq,1))
    #seq[:,n_steps/4:3*n_steps/4,0]]
    seq[:,:n_steps/fracZero,0] = np.tile(np.linspace(1,0,num=n_steps/fracZero) * np.cos(baseFreq[:n_steps/fracZero]),(n_seq,1))
    #seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps, n_out))

    targets[:, :, 0] = np.tile(np.cos(baseFreq),(n_seq,1))
    targets[:, :, 1] = np.tile(np.sin(baseFreq),(n_seq,1))

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=2)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=2)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='cappedrelu')

    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y)], h=model.rnn.h)

    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    plt.close('all')
    fig = plt.figure()
    ax1 = plt.subplot(211)
    plt.plot(seq[0])
    ax1.set_title('input')
    ax2 = plt.subplot(212)
    true_targets = plt.plot(targets[0])

    guess = model.predict(seq[0])
    guessed_targets = plt.plot(guess, linestyle='--')
    for i, x in enumerate(guessed_targets):
        x.set_color(true_targets[i].get_color())
    ax2.set_title('solid: true output, dashed: model output')
            
    return model
Ejemplo n.º 3
0
def test_real(n_updates=100):
    """ Test RNN with real-valued outputs. """
    n_hidden = 10
    n_in = 5
    n_out = 3
    n_steps = 10
    n_seq = 1000

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)

    targets = np.zeros((n_seq, n_steps, n_out))
    targets[:, 1:, 0] = seq[:, :-1, 3]  # delayed 1
    targets[:, 1:, 1] = seq[:, :-1, 2]  # delayed 1
    targets[:, 2:, 2] = seq[:, :-2, 0]  # delayed 2

    targets += 0.01 * np.random.standard_normal(targets.shape)

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets],
                                       batch_size=None,
                                       number_batches=100)
    cg_dataset = SequenceDataset([seq, targets],
                                 batch_size=None,
                                 number_batches=20)

    model = MetaRNN(n_in=n_in,
                    n_hidden=n_hidden,
                    n_out=n_out,
                    activation='tanh')

    opt = hf_optimizer(p=model.rnn.params,
                       inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y)],
                       h=model.rnn.h)

    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    plt.close('all')
    fig = plt.figure()
    ax1 = plt.subplot(211)
    plt.plot(seq[0])
    ax1.set_title('input')
    ax2 = plt.subplot(212)
    true_targets = plt.plot(targets[0])

    guess = model.predict(seq[0])
    guessed_targets = plt.plot(guess, linestyle='--')
    for i, x in enumerate(guessed_targets):
        x.set_color(true_targets[i].get_color())
    ax2.set_title('solid: true output, dashed: model output')
Ejemplo n.º 4
0
def TrainEM(train_scores,train_vad_ts,train_features_ts):
   # prepare data for training
   [input_matrix,target_matrix] = PrepareData(train_vad_ts,train_features_ts) 

   n_in = input_matrix.shape[2]
   n_out = target_matrix.shape[2]
   n_hidden = 10
   not_converged = True
   while not_converged:
      model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,\
                    learning_rate=0.001, learning_rate_decay=0.999,\
                    n_epochs=400, activation='tanh')

      model.fit(input_matrix, target_matrix, validation_frequency=1000)
Ejemplo n.º 5
0
    def __init__(self, word2vec_path, label_path, model_path, n_in, n_hidden):

        self.n_in = n_in
        self.n_hidden = n_hidden

        #
        # Initialize the label vectorID
        #
        self.word2label = {}
        self.label2word = {}

        with open(label_path, 'r', encoding='UTF-8') as file:
            for line in file:
                lines = line.strip('\n').split('\t')
                label = lines[0]
                word = lines[1]
                self.word2label[word] = label
                self.label2word[label] = word
        self.n_out = len(self.label2word)

        #
        # Initialize the word2vec model (model feature dim has 200)
        #
        self.model = {}
        with open(word2vec_path) as fin:
            for line in fin:
                items = line.replace('\r', '').replace('\n', '').split(' ')
                if len(items) < 10:
                    continue
                word = items[0]
                vect = numpy.array([float(i)
                                    for i in items[1:]])  # if len(i) > 1])
                if vect.shape[0] != 200:
                    print(vect)

                self.model[word] = vect

        #
        # Initialize the RNN Model
        #
        self.RNN = MetaRNN(n_in=n_in,
                           n_hidden=n_hidden,
                           n_out=self.n_out,
                           activation='tanh',
                           output_type='softmax',
                           use_symbolic_softmax=True)

        save = pickle.load(open(model_path, 'rb'), encoding='latin1')
        cg_last_x, best, lambda_, first_iteration, init_p = save

        for i, j in zip(self.RNN.rnn.params, init_p):
            i.set_value(j)

        inputs = [self.RNN.x, self.RNN.y]
        cost = self.RNN.rnn.loss(self.RNN.y)
        self.f_pred = theano.function(inputs, cost, on_unused_input='ignore')
Ejemplo n.º 6
0
def HFTest(seq, targets, t_seq, t_targets, n_hidden=10, n_updates=250):
    """ Test RNN with hessian free optimization """

    n_in = 2 
    n_out = 2 
    n_classes = 10 

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='softmax',
                    use_symbolic_softmax=True)

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    mse_updates = []
    for i in range(n_updates):
        opt.train(gradient_dataset, cg_dataset, num_updates=1)
        mse = 0
        for t in range(len(t_seq)):
            guess = model.predict_proba(t_seq[t])
            if guess != t_target:
                mse += 1
        mse_updates.append(mse)
        print i

    return (mse_updates, model)
Ejemplo n.º 7
0
# if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
# class 2
# if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
# class 0
targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
#targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

'''
print("Convert to SequenceDataset ...")

gradient_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=100)
cg_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=50)

model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, n_epochs=n_epochs,
                activation='tanh', output_type='softmax',
                use_symbolic_softmax=True, L2_reg=0.0001)

# optimizes negative log likelihood
# but also reports zero-one error
opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                   s=model.rnn.y_pred, n_in=n_in,
                   costs=[model.rnn.loss(model.y),
                          model.rnn.errors(model.y)], h=model.rnn.h)

print("Training ...")
opt.train(gradient_dataset, cg_dataset, initial_lambda=1.0, num_updates=n_updates, save_progress='save_param')

seqs = range(10)

plt.close('all')
Ejemplo n.º 8
0
            [n_seq, n_steps, n_in] = seq.shape

            n_hidden = 2 * n_in
            n_out = 24

            seqs = [i for i in seqs]
            targets = [i for i in target]
            gradient_dataset = SequenceDataset([seqs, targets],
                                               batch_size=None,
                                               number_batches=80)
            cg_dataset = SequenceDataset([seqs, targets],
                                         batch_size=None,
                                         number_batches=20)

            model = MetaRNN(n_in=n_in,
                            n_mul=n_hidden,
                            n_out=n_out,
                            activation='tanh')

            opt = hf_optimizer(p=model.rnn.params,
                               inputs=[model.x, model.y],
                               s=model.rnn.y_pred,
                               costs=[model.rnn.loss(model.y)],
                               h=model.rnn.h)

            opt.train(gradient_dataset, cg_dataset, num_updates=30)

            path = '/root/chentian/share/201605/one_ped1/%d' % index
            os.mkdir(path)
            path0 = path + '/predict.csv'
            f3 = file(path0, "a")
            for seq_num in range(0, n_seq):
#Creating parameters for training RNN
n_hidden = 5 # M
n_in = 3      # D
n_out = 1     # K
n_steps = 1  # the length of each sequence
n_seq = len(food_sel_scaled_train)   # the number of datapoints (i.e. sequences)

#Creating input and output arrays for training RNN         
rating = np.array(food_sel_scaled_train[['rating','price.tier','stats.checkinsCount']]).reshape(n_seq,n_steps,n_in)
score = np.array(food_sel_scaled_train['SCORE']).reshape(n_seq,n_steps,n_out)


#Creating the model and feeding it with training data set
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    learning_rate=0.001, learning_rate_decay=0.999,
                    n_epochs=50, activation='tanh')
model.fit(rating, score, validation_frequency=5000)

guess = model.predict(rating.reshape(len(rating), n_in))
scores_pred = pd.DataFrame(guess)

scores_pred.columns = ['predictions']

scores_pred.predictions.plot(kind='hist', bins=20, figsize=(6,4), grid=True,                             title = "Histogram of predicted DOH normalized Scores (IS)", alpha=0.8)

food_sel_scaled_train.SCORE.plot(kind='hist', bins=20, figsize=(6,4), grid=True,                             title = "Histogram of actual DOH normalized Scores (IS)", alpha=0.8)

#Creating parameters for training RNN
n_hidden = 5 # M
n_in = 3      # D
Ejemplo n.º 10
0
        a = clean_text.clean_text(line)
        a = a.split(' ')

        for i in range(len(a)):
            word = a[i]
            if word not in word2label:
                word2label[word] = labelCount
                label2word[labelCount] = word
                labelCount += 1

n_hidden = 100
n_in = word_vec_len
n_out = len(label2word)
RNN = MetaRNN(n_in=n_in,
              n_hidden=n_hidden,
              n_out=n_out,
              activation='tanh',
              output_type='softmax',
              use_symbolic_softmax=True)

save = pickle.load(open(model_path, 'rb'), encoding='latin1')
cg_last_x, best, lambda_, first_iteration, init_p = save

for i, j in zip(RNN.rnn.params, init_p):
    i.set_value(j)

inputs = [RNN.x, RNN.y]
#costs = [model.rnn.loss(model.y), model.rnn.errors(model.y)]
cost = RNN.rnn.loss(RNN.y)
f_pred = theano.function(inputs, cost, on_unused_input='ignore')

test_str = "i am fire thin q"
Ejemplo n.º 11
0
def test_binary(multiple_out=False, n_updates=250):
    """ Test RNN with binary outputs. """
    n_hidden = 10
    n_in = 5
    if multiple_out:
        n_out = 2
    else:
        n_out = 1
    n_steps = 10
    n_seq = 100

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps, n_out), dtype='int32')

    # whether lag 1 (dim 3) is greater than lag 2 (dim 0)
    targets[:, 2:, 0] = np.cast[np.int32](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    if multiple_out:
        # whether product of lag 1 (dim 4) and lag 1 (dim 2)
        # is less than lag 2 (dim 0)
        targets[:, 2:, 1] = np.cast[np.int32](
            (seq[:, 1:-1, 4] * seq[:, 1:-1, 2]) > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='binary')

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = xrange(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')
        ax2 = plt.subplot(212)
        true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')

        guess = model.predict_proba(seq[seq_num])
        guessed_targets = plt.step(xrange(n_steps), guess)
        plt.setp(guessed_targets, linestyle='--', marker='d')
        for i, x in enumerate(guessed_targets):
            x.set_color(true_targets[i].get_color())
        ax2.set_ylim((-0.1, 1.1))
        ax2.set_title('solid: true output, dashed: model output (prob)')
Ejemplo n.º 12
0
def RNN_leave_one_cross_validation(seq, targets, n_updates=250, n_seq=182):
    """ Test RNN with softmax outputs. """
    length = len(seq)
    right, first, second, third = 0, 0, 0, 0
    false_list = []
    for k in range(0, length):
        n_hidden = 10
        n_in = 40
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = copy.deepcopy(seq)
        train_lable = copy.deepcopy(targets)

        test_sample = seq[k]

        train_sample = np.delete(train_sample, k, 0)
        train_lable = np.delete(train_lable, k, 0)

        train_sample = [i for i in train_sample]
        train_lable = [i for i in train_lable]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation='tanh',
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

        guess = model.predict_proba(test_sample)
        tmp_list = np.ndarray.tolist(guess.T)
        # print tmp_list
        if (targets[k][0] == 0):
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                first += 1
                right += 1
            else:
                print k, False
                false_list.append(k)
        elif (targets[k][0] == 1):
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                second += 1
                right += 1
            else:
                print k, False
                false_list.append(k)
        else:
            if (tmp_list.index(max(tmp_list)) == targets[k][0]):
                print k, True
                third += 1
                right += 1
            else:
                print k, False
                false_list.append(k)

    print "class G1:", 1.0 * first / 59
    print "class S:", 1.0 * second / 58
    print "class G2:", 1.0 * third / 65
    print "class total:", 1.0 * right / length
    print false_list
n_in = 3  # D
n_out = 1  # K
n_steps = 1  # the length of each sequence
n_seq = len(food_sel_scaled_train)  # the number of datapoints (i.e. sequences)

#Creating input and output arrays for training RNN
rating = np.array(food_sel_scaled_train[[
    'rating', 'price.tier', 'stats.checkinsCount'
]]).reshape(n_seq, n_steps, n_in)
score = np.array(food_sel_scaled_train['SCORE']).reshape(n_seq, n_steps, n_out)

#Creating the model and feeding it with training data set
model = MetaRNN(n_in=n_in,
                n_hidden=n_hidden,
                n_out=n_out,
                learning_rate=0.001,
                learning_rate_decay=0.999,
                n_epochs=50,
                activation='tanh')
model.fit(rating, score, validation_frequency=5000)

guess = model.predict(rating.reshape(len(rating), n_in))
scores_pred = pd.DataFrame(guess)

scores_pred.columns = ['predictions']

scores_pred.predictions.plot(
    kind='hist',
    bins=20,
    figsize=(6, 4),
    grid=True,
Ejemplo n.º 14
0
def test_binary(multiple_out=False, n_updates=250):
    """ Test RNN with binary outputs. """
    n_hidden = 10
    n_in = 5
    if multiple_out:
        n_out = 2
    else:
        n_out = 1
    n_steps = 10
    n_seq = 100

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps, n_out), dtype='int32')

    # whether lag 1 (dim 3) is greater than lag 2 (dim 0)
    targets[:, 2:, 0] = np.cast[np.int32](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    if multiple_out:
        # whether product of lag 1 (dim 4) and lag 1 (dim 2)
        # is less than lag 2 (dim 0)
        targets[:, 2:, 1] = np.cast[np.int32](
            (seq[:, 1:-1, 4] * seq[:, 1:-1, 2]) > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='binary')

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = range(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')
        ax2 = plt.subplot(212)
        true_targets = plt.step(range(n_steps), targets[seq_num], marker='o')

        guess = model.predict_proba(seq[seq_num])
        guessed_targets = plt.step(range(n_steps), guess)
        plt.setp(guessed_targets, linestyle='--', marker='d')
        for i, x in enumerate(guessed_targets):
            x.set_color(true_targets[i].get_color())
        ax2.set_ylim((-0.1, 1.1))
        ax2.set_title('solid: true output, dashed: model output (prob)')
Ejemplo n.º 15
0
def test_softmax(n_updates=250):
    """ Test RNN with softmax outputs. """
    n_hidden = 10
    n_in = 5
    n_steps = 10
    n_seq = 100
    n_classes = 3
    n_out = n_classes  # restricted to single softmax per time step

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps), dtype='int32')

    thresh = 0.5
    # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
    # class 1
    # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
    # class 2
    # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
    # class 0
    targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
    targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
    #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='softmax',
                    use_symbolic_softmax=True)

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = range(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')

        ax2 = plt.subplot(212)
        # blue line will represent true classes
        true_targets = plt.step(range(n_steps), targets[seq_num], marker='o')

        # show probabilities (in b/w) output by model
        guess = model.predict_proba(seq[seq_num])
        guessed_probs = plt.imshow(guess.T, interpolation='nearest',
                                   cmap='gray')
        ax2.set_title('blue: true class, grayscale: probs assigned by model')
Ejemplo n.º 16
0
def test_softmax(n_updates=250):
    """ Test RNN with softmax outputs. """
    n_hidden = 10
    n_in = 5
    n_steps = 10
    n_seq = 100
    n_classes = 3
    n_out = n_classes  # restricted to single softmax per time step

    np.random.seed(0)
    # simple lag test
    seq = np.random.randn(n_seq, n_steps, n_in)
    targets = np.zeros((n_seq, n_steps), dtype='int32')

    thresh = 0.5
    # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
    # class 1
    # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
    # class 2
    # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
    # class 0
    targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
    targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
    #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

    # SequenceDataset wants a list of sequences
    # this allows them to be different lengths, but here they're not
    seq = [i for i in seq]
    targets = [i for i in targets]

    gradient_dataset = SequenceDataset([seq, targets], batch_size=None,
                                       number_batches=500)
    cg_dataset = SequenceDataset([seq, targets], batch_size=None,
                                 number_batches=100)

    model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
                    activation='tanh', output_type='softmax',
                    use_symbolic_softmax=True)

    # optimizes negative log likelihood
    # but also reports zero-one error
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                       s=model.rnn.y_pred,
                       costs=[model.rnn.loss(model.y),
                              model.rnn.errors(model.y)], h=model.rnn.h)

    # using settings of initial_lambda and mu given in Nicolas' RNN example
    # seem to do a little worse than the default
    opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)

    seqs = xrange(10)

    plt.close('all')
    for seq_num in seqs:
        fig = plt.figure()
        ax1 = plt.subplot(211)
        plt.plot(seq[seq_num])
        ax1.set_title('input')

        ax2 = plt.subplot(212)
        # blue line will represent true classes
        true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')

        # show probabilities (in b/w) output by model
        guess = model.predict_proba(seq[seq_num])
        guessed_probs = plt.imshow(guess.T, interpolation='nearest',
                                   cmap='gray')
        ax2.set_title('blue: true class, grayscale: probs assigned by model')
Ejemplo n.º 17
0
def RNN_k_fold_croos_validation(sample, lable, n_updates=20):
    X = sample
    y = lable
    kf = KFold(n_splits=5, shuffle=True)
    split_num = kf.get_n_splits(X)
    k = 1
    G1, G2, S, Total = 0, 0, 0, 0
    for train_index, test_index in kf.split(X):
        # print("TRAIN:", train_index, "TEST:", test_index)
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        n_hidden = 10
        n_in = 40
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = [i for i in X_train]
        train_lable = [i for i in y_train]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation='tanh',
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)
        right, first, second, third = 0, 0, 0, 0
        first_sum, second_sum, third_sum = 0, 0, 0
        for count in range(0, X_test.shape[0]):
            guess = model.predict_proba(X_test[count])
            tmp_list = np.ndarray.tolist(guess.T)
            # print test_sample.shape
            if (y_test[count][0] == 0):
                first_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    first += 1
                    right += 1
                else:
                    print k, False
            elif (y_test[count][0] == 1):
                second_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    second += 1
                    right += 1
                else:
                    print False
            else:
                third_sum += 1
                if (tmp_list.index(max(tmp_list)) == y_test[count][0]):
                    print True
                    third += 1
                    right += 1
                else:
                    print False

        print "...................................................................................................."
        print k, "interation"
        print "...................................................................................................."
        G1 = G1 + 1.0 * first / first_sum
        S = S + 1.0 * second / second_sum
        G2 = G2 + 1.0 * third / third_sum
        Total = Total + 1.0 * right / X_test.shape[0]
        print "class G1:", G1 / k
        print "class S:", S / k
        print "class G2:", G2 / k
        print "class total:", Total / k
        k += 1

    print "...................................................................................................."
    print "Final Result:"
    print "...................................................................................................."
    print "class G1:", G1 / split_num
    print "class S:", S / split_num
    print "class G2:", G2 / split_num
    print "class total:", Total / split_num
Ejemplo n.º 18
0
def RNN_Evaluation(sample,
                   lable,
                   n_hidden=10,
                   activation_func='tanh',
                   n_updates=20,
                   k_fold=5):
    X = sample
    y = lable
    kf = KFold(n_splits=k_fold, shuffle=True)
    split_num = kf.get_n_splits(X)
    k = 1
    G1, G2, S, Total = 0, 0, 0, 0
    (AUC, p, r, f1) = (0, 0, 0, 0)
    for train_index, test_index in kf.split(X):
        # print("TRAIN:", train_index, "TEST:", test_index)
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]

        n_in = 20
        n_classes = 3
        n_out = n_classes  # restricted to single softmax per time step

        np.random.seed(0)

        train_sample = [i for i in X_train]
        train_lable = [i for i in y_train]

        gradient_dataset = SequenceDataset([train_sample, train_lable],
                                           batch_size=None,
                                           number_batches=500)
        cg_dataset = SequenceDataset([train_sample, train_lable],
                                     batch_size=None,
                                     number_batches=100)

        model = MetaRNN(n_in=n_in,
                        n_hidden=n_hidden,
                        n_out=n_out,
                        activation=activation_func,
                        output_type='softmax',
                        use_symbolic_softmax=True)

        opt = hf_optimizer(
            p=model.rnn.params,
            inputs=[model.x, model.y],
            s=model.rnn.y_pred,
            costs=[model.rnn.loss(model.y),
                   model.rnn.errors(model.y)],
            h=model.rnn.h)

        opt.train(gradient_dataset, cg_dataset, num_updates=n_updates)
        y_test_vector = np.zeros((X_test.shape[0], 3), dtype='int64')
        for count in range(0, X_test.shape[0]):
            if (y_test[count][0] == 0):
                y_test_vector[count][0] = 1
            elif (y_test[count][0] == 1):
                y_test_vector[count][1] = 1
            else:
                y_test_vector[count][2] = 1

        (AUC_k, p_k, r_k, f1_k) = evaluation.evaluate(model, X_test,
                                                      y_test_vector, 0.8)
        print("%s / %s Iteration:AUC: %s, Prec: %s, Rec: %s, F1: %s" %
              (k, k_fold, AUC_k, p_k, r_k, f1_k))
        AUC = AUC + AUC_k
        p = p + p_k
        r = r + r_k
        f1 = f1 + f1_k
        print("Average: AUC: %s, Prec: %s, Rec: %s, F1: %s" %
              (AUC / k, p / k, r / k, f1 / k))
        k += 1
    AUC = AUC / k_fold
    p = p / k_fold
    r = r / k_fold
    f1 = f1 / k_fold
    return AUC, p, r, f1
Ejemplo n.º 19
0
# class 0
targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
#targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])

'''
y_seq_list = x_seq_list
#gradient_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=100)
#cg_dataset = SequenceDataset([x_seq_list, y_seq_list], batch_size=None, number_batches=50)

print("Convert to SequenceDataset ...")
gradient_dataset = SequenceDataset([x_seq_list, x_seq_list], batch_size=None, number_batches=500)
cg_dataset = SequenceDataset([x_seq_list, x_seq_list], batch_size=None, number_batches=1000)

model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, n_epochs=n_epochs,
                activation='tanh', output_type='softmax',
                use_symbolic_softmax=True, L2_reg=0.0001)

# optimizes negative log likelihood
# but also reports zero-one error
opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
                   s=model.rnn.y_pred,
                   n_in=n_in, word2vec=word2vec, word2label=word2label,
                   costs=[model.rnn.loss(model.y),
                          model.rnn.errors(model.y)], h=model.rnn.h)

print("Training ...")
opt.train(gradient_dataset, cg_dataset, num_updates=n_updates, save_progress='save_param')

seqs = range(10)
Ejemplo n.º 20
0
    cg_dataset = SequenceDataset([seqs, targets], batch_size=None,
                             number_batches=20)
		
    model = MetaRNN(n_in=n_in, n_mul=n_hidden, n_out=n_out,
                activation='tanh')
                
    opt = hf_optimizer(p=model.rnn.params, inputs=[model.x, model.y],
						   s=model.rnn.y_pred,
						   costs=[model.rnn.loss(model.y)], h=model.rnn.h)
    
    opt.train(gradient_dataset, cg_dataset, num_updates=300)'''
    model = MetaRNN(n_in=n_in,
                    n_mul=n_hidden,
                    n_out=n_out,
                    learning_rate=0.001,
                    learning_rate_decay=0.999,
                    n_epochs=n_epochs,
                    L1_reg=0.005,
                    activation='tanh',
                    output_type='real',
                    index=index)
    model.fit(seqs, targets, validation_frequency=1000)
    print "traning over"

    path = '/root/chentian/share/201605/ped2'
    #    os.makedirs(path)
    path0 = path + '/predict.csv'
    f3 = file(path0, "a")
    for k in range(0, 3000):
        guess = model.predict(test_seqs[k])
        np.savetxt(f3, guess, delimiter=',')
    f3.close()