def __init__(self): super(VAERNN, self).__init__() self.z_size = 32 self.kl_tolerance = 0.5 self.vae = VAE() self.rnn = RNN() self.vae.train() self.rnn.train() self.init_() self.is_cuda = False
def __init__(self): super(VAERNN, self).__init__() self.z_size = 32 self.kl_tolerance = 0.5 self.vae = VAE() self.rnn = RNN() self.vae.load_state_dict( torch.load(vae_model_path, map_location=lambda storage, loc: storage)) self.rnn.load_state_dict( torch.load(rnn_model_path, map_location=lambda storage, loc: storage)) self.vae.train() self.rnn.train() self.init_() self.is_cuda = False
import torch.multiprocessing as mp import torch.optim as optim from this_util import * from vae import VAE from rnn_me import RNN from policy import Policy vae_model = VAE() vae_model.load_state_dict( torch.load(vae_model_path, map_location=lambda storage, loc: storage) ) #, map_location=lambda storage, loc: storage) vae_model.eval() rnn_model = RNN() rnn_model.load_state_dict( torch.load(rnn_model_path, map_location=lambda storage, loc: storage)) rnn_model.eval() def wow(state, h, policy, vae_model, rnn_model): state = tensor_state(state) z = vae_model(state) h = h.squeeze(0) z_h = torch.cat((z, h), dim=1) a = policy(z_h) one = one_hot(a) one = torch.from_numpy(one) one = one.unsqueeze(0)