xy = [0, 0]
#thetas = [pi/2, 5*pi/6]
thetas = [0, 0]
l1 = 0.5; l2 = 0.5
two_link = Links(xy, thetas, l1, l2)

# Sensor
cam = ExtendedCamera2D(f, 0, 0, -pi/4, w, ks=array([-0.25, 0.11]),\
        color='k')

# Attach sensor to elbow of arm facing direction of second link
def pos_fn(x):
    return x[0] + cos(x[2]+pi/2)*l1,\
           x[1] + sin(x[2]+pi/2)*l1,\
           x[2] + x[3]
two_link.attach_sensor(cam, pos_fn)
    
s.add_robot(two_link)

# Draw scene
s.draw()
plt.gca().set_xlim(-1, 1);
plt.gca().set_ylim(-1, 1);

# Generate a nominal trajectory
T = 100
X_bar = mat(zeros((two_link.NX, T)))
U_bar = mat(ones((two_link.NU, T-1))/10)
for t in xrange(T):
   X_bar[:,t] = two_link.dynamics(X_bar[:,t-1], U_bar[:, t-1])
Ejemplo n.º 2
0
s = SimEnv2D(bounds=[-1, 1, -1, 1], beacons=beacons)
#s = SimEnv2D(bounds=[-3, 3, -3, 3], beacons=beacons)

theta0 = np.array([-0.5, -0.2]) #x0 is broken, just set to 0
origin = np.array([0.0, 0.0])
links = Links(theta0, origin=origin, state_rep='angles')
x0 = np.mat(theta0).T
#x0 = links.forward_kinematics(origin, theta0)
#x0 = np.mat(x0).T
# hack xN
thetaN = np.array([-3.8, -1.9]) # can be looked up using IK
xN = np.mat(thetaN).T
#xN = links.forward_kinematics(origin, thetaN)
#xN = np.mat(xN).T

links.attach_sensor(BeaconSensor(decay_coeff=15), lambda x: links.forward_kinematics(origin, x))
#links.attach_sensor(BeaconSensor(decay_coeff=25), lambda x: x[0:2])

s.add_robot(links)
T = 20
num_states = links.NX
num_ctrls = links.NU
num_measure = len(beacons)#+1 #arg/make part of robot observe

Q = np.mat(np.diag([1e-5]*num_states)) #arg
#Q[2,2] = 1e-4 
#Q[3,3] = 1e-4
R = np.mat(np.diag([0.0005]*num_measure)) #arg
#R[1,1] = 1e-3
#R[2,2] = 1e-3
x0 = np.mat(theta0).T
print links.forward_kinematics(origin, theta0)
#x0 = links.forward_kinematics(origin, theta0)
#x0 = np.mat(x0).T
# hack xN
#thetaN = np.array([-3.8, -1.9]) # can be looked up using IK
thetaN = links.inverse_kinematics(origin, ball)
#xN = np.vstack((thetaN.T, ball.T))
#xN = np.reshape(xN, (4,1))
xN = np.mat(thetaN).T
print xN

#xN = links.forward_kinematics(origin, thetaN)
#xN = np.mat(xN).T

links.attach_sensor(BeaconSensor(decay_coeff=15),
                    lambda x: links.forward_kinematics(origin, x))
#links.attach_sensor(BeaconSensor(decay_coeff=25), lambda x: x[0:2])

localizer = links  # HAAAAAACK!!!!!!
#localizer = LocalizerBot(links, ball)
#x0 = np.mat(localizer.x).T;
#localizer.attach_sensor(FOVSensor(localizer.x, fov_angle=2*pi, decay_coeff=25), lambda x: localizer.fov_state(x))

s.add_robot(localizer)
T = 20
num_states = localizer.NX
num_ctrls = localizer.NU
num_measure = len(beacons)  #+1 #arg/make part of robot observe

Q = np.mat(np.diag([1e-5] * num_states))  #arg
#Q[2,2] = 1e-10