Ejemplo n.º 1
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, calculate_accuracy

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name,
                                           logits=False,
                                           input_range_type=1)
        model.compile(loss='categorical_crossentropy',
                      optimizer='sgd',
                      metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder,
                                        "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(
            sess,
            model,
            x,
            y,
            X_test,
            Y_test_target,
            attack_name,
            attack_params,
            use_cache=x_adv_fpath,
            verbose=FLAGS.verbose,
            attack_log_fpath=attack_log_fpath)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder,
                                         "%s.npy" % attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret,
                                            Y_test_target.copy(), targeted,
                                            Y_test_adv_discret_pred)
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = True
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'duration_per_sample',
        'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist',
        'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        show_imgs_in_rows(rows, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.

    # 6. Evaluate robust classification techniques.
    # Example: --robustness \
    #           "Base;FeatureSqueezing?squeezer=bit_depth_1;FeatureSqueezing?squeezer=median_filter_2;"
    if FLAGS.robustness != '':
        """
        Test the accuracy with robust classifiers.
        Evaluate the accuracy on all the legitimate examples.
        """
        from robustness import evaluate_robustness
        result_folder_robustness = os.path.join(FLAGS.result_folder,
                                                "robustness")
        fname_prefix = "%s_%s_robustness" % (task_id, attack_string_hash)
        evaluate_robustness(FLAGS.robustness, model, Y_test_all, X_test_all, Y_test, \
                attack_string_list, X_test_adv_discretized_list,
                fname_prefix, selected_idx_vis, result_folder_robustness)
Ejemplo n.º 2
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, \
        calculate_accuracy

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
        FLAGS.image_size = 32  # Redundant for the Current Attack.
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()
        FLAGS.image_size = 224  # Redundant for the Current Attack.

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # Randomized optimizations
    if FLAGS.dataset_name != "ImageNet":
        all_idx = np.arange(10000)
        np.random.shuffle(all_idx)
        selected_idx = all_idx[:(FLAGS.nb_examples * 2)]
        X_test_all, Y_test_all = X_test_all[selected_idx], Y_test_all[
            selected_idx]

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    sq_list = FLAGS.squeezers.split(';')
    print(" Squeezers used for EOT :", sq_list)

    x_s = []
    squeezers = []
    models = []
    for squeezer in sq_list:
        x_s.append(
            tf.placeholder(tf.float32,
                           shape=(None, dataset.image_size, dataset.image_size,
                                  dataset.num_channels)))
        if squeezer.startswith("median"):
            squeezers.append(lambda x: x)
            with tf.variable_scope(FLAGS.model_name + squeezer):
                cur_model = dataset.load_model_by_name(
                    FLAGS.model_name,
                    logits=False,
                    input_range_type=1,
                    pre_filter=get_squeezer_by_name(squeezer, 'tensorflow'))
                cur_model.compile(loss='categorical_crossentropy',
                                  optimizer='sgd',
                                  metrics=['acc'])
                models.append(cur_model)
        else:
            squeezers.append(get_squeezer_by_name(squeezer, 'python'))
            with tf.variable_scope(FLAGS.model_name + "local" + squeezer):
                cur_model = dataset.load_model_by_name(FLAGS.model_name,
                                                       logits=False,
                                                       input_range_type=1)
                cur_model.compile(loss='categorical_crossentropy',
                                  optimizer='sgd',
                                  metrics=['acc'])
                models.append(cur_model)

    with tf.variable_scope(FLAGS.model_name + "vanilla"):
        model_vanilla = dataset.load_model_by_name(FLAGS.model_name,
                                                   logits=False,
                                                   input_range_type=1)
        model_vanilla.compile(loss='categorical_crossentropy',
                              optimizer='sgd',
                              metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")

    # We use the Vanilla Model here for Prediction
    print(
        "  ************************************************* Shape of X_test_all :",
        X_test_all.shape)
    Y_pred_all = model_vanilla.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5],
             task['model_name'], )

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.

    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    # NOTE : At the moment we only support single attacks and single detectors.
    for attack_string in attack_string_list:
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        # Note that we use the attack model here instead of the vanilla model
        # Note that we pass in the Squeezer function for BPDA
        X_test_adv = eot_adversarial_attack(sess, model_vanilla, models, x, y,
                                            x_s, X_test, Y_test_target,
                                            attack_params, squeezers)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model_vanilla.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder,
                                         "%s.npy" % attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model_vanilla.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        # Y_test_adv_discret_pred is for the vanilla model
        rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret,
                                            Y_test_target.copy(), targeted,
                                            Y_test_adv_discret_pred)
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['discretization'] = True
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
                                                "%s_attacks_%s_evaluation.csv" % \
                                                (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'discretization',
        'success_rate', 'mean_confidence', 'mean_l2_dist', 'mean_li_dist',
        'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        #show_imgs_in_rows(rows, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.

    # 6. Evaluate robust classification techniques.
    # Example: --robustness \
    #           "Base;FeatureSqueezing?squeezer=bit_depth_1;FeatureSqueezing?squeezer=median_filter_2;"
    if FLAGS.robustness != '':
        """
        Test the accuracy with robust classifiers.
        Evaluate the accuracy on all the legitimate examples.
        """
        from robustness import evaluate_robustness
        result_folder_robustness = os.path.join(FLAGS.result_folder,
                                                "robustness")
        fname_prefix = "robustness_summary"
        evaluate_robustness(FLAGS.robustness, model_vanilla, Y_test_all, X_test_all, Y_test, \
                            attack_string_list, X_test_adv_discretized_list,
                            fname_prefix, selected_idx_vis, result_folder_robustness)

    # 7. Detection experiment.
    # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4,bilateral_filter_15_15_60;"
    if FLAGS.detection != '':
        from detections.base import DetectionEvaluator

        result_folder_detection = os.path.join(FLAGS.result_folder,
                                               "detection")
        csv_fname = "detection_summary.csv"
        de = DetectionEvaluator(model_vanilla, result_folder_detection,
                                csv_fname, FLAGS.dataset_name)
        Y_test_all_pred = model_vanilla.predict(X_test_all)
        de.build_detection_dataset(X_test_all, Y_test_all, Y_test_all_pred,
                                   selected_idx, X_test_adv_discretized_list,
                                   Y_test_adv_discretized_pred_list,
                                   attack_string_list, attack_string_hash,
                                   FLAGS.clip, Y_test_target_next,
                                   Y_test_target_ll)
        de.evaluate_detections(FLAGS.detection)
Ejemplo n.º 3
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, calculate_accuracy, calculate_real_untargeted_mean_confidence

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # 2. Load a trained model.
    sess = load_tf_session()
    #keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name,
                                           logits=False,
                                           input_range_type=1)
        model.compile(loss='categorical_crossentropy',
                      optimizer='sgd',
                      metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")
    #X_test_all = scipy.ndimage.rotate(X_test_all, 5, reshape=False, axes=(2, 1))
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all, _, _, _ = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected, max_conf_selected, min_conf_selected, std_conf_selected = calculate_mean_confidence(
        Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))
    print('max confidence on ground truth classes, selected %.4f\n' %
          (max_conf_selected))
    print('min confidence on ground truth classes, selected %.4f\n' %
          (min_conf_selected))
    print('std confidence on ground truth classes, selected %.4f\n' %
          (std_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class, get_most_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)
    Y_test_target_ml = get_most_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder,
                                        "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
                #Y_test_target = Y_test.copy()
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
                #Y_test_target = Y_test.copy()
                #print (Y_test_target_ll)
            elif targeted == 'most':
                Y_test_target = Y_test_target_ml
                #Y_test_target = Y_test.copy()
                #print (Y_test_target_ml)
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()
            Y_test_target_all = Y_test_all.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(
            sess,
            model,
            x,
            y,
            X_test,
            Y_test_target,
            attack_name,
            attack_params,
            use_cache=x_adv_fpath,
            verbose=FLAGS.verbose,
            attack_log_fpath=attack_log_fpath)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model.predict(X_test_adv)
        #predictions_fpath = os.path.join(predictions_folder, "%s.npy"% attack_string)
        #np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        #import utils.squeeze as squeezer

        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        #X_test_adv_discret = reduce_precision_py(X_test_adv, 2)
        X_test_adv_discretized_list.append(X_test_adv_discret)

        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        #Y_test_adv_discret_pred1 = to_categorical(np.argmax(model1.predict(X_test_adv_discret), axis=1))

        from LID.extract_artifacts_obfus import get_lid
        from LID.util_obfus import get_noisy_samples, random_split, block_split, train_lr, compute_roc
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
        from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler

        #from LID.extract_artifact import *
        #from LID_util import *

        X_test_noisy = get_noisy_samples(X_test, X_test_adv, 'mnist', 'fgsm')

        artifacts, labels = get_lid(model, X_test, X_test_noisy,
                                    X_test_adv_discret, 20, 100, 'mnist')

        #X=artifacts
        #Y=labels

        print(X_test_noisy.shape)
        #print (artifacts.shape)

        # standarization
        scaler = MinMaxScaler().fit(artifacts)
        artifacts = scaler.transform(artifacts)
        # X = scale(X) # Z-norm

        # test attack is the same as training attack
        X_train_lid, Y_train_lid, X_test_lid, Y_test_lid = block_split(
            artifacts, labels)

        print(X_train_lid.shape)
        print(X_test_lid.shape)

        ## Build detector
        # print("LR Detector on [dataset: %s, train_attack: %s, test_attack: %s] with:" %
        #       (args.dataset, args.attack, args.test_attack))
        lr = train_lr(X_train_lid, Y_train_lid)

        ## Evaluate detector
        y_pred_lid = lr.predict_proba(X_test_lid)[:, 1]
        y_label_pred = lr.predict(X_test_lid)

        Y_test_lid = np.reshape(Y_test_lid, Y_test_lid.shape[0])

        # AUC
        _, _, auc_score = compute_roc(Y_test_lid[:100],
                                      y_pred_lid[:100],
                                      plot=False)
        precision = precision_score(Y_test_lid[:100], y_label_pred[:100])
        recall = recall_score(Y_test_lid[:100], y_label_pred[:100])

        y_label_pred = lr.predict(X_test_lid[:100])
        acc = accuracy_score(Y_test_lid[:100], y_label_pred[:100])
        print(
            'Detector ROC-AUC score: %0.4f, accuracy: %.4f, precision: %.4f, recall(TPR): %.4f'
            % (auc_score, acc, precision, recall))

        from detections.base import evalulate_detection_test

        a, b, c, d, e = evalulate_detection_test(Y_test_lid[:100],
                                                 y_label_pred[:100])
        f1 = f1_score(Y_test_lid[:100], y_label_pred)

        print(
            'SAE_acc: %0.4f, tpr: %.4f, fpr: %.4f, fdr (1- precision): %.4f, fbr (official name false omission rate): %.4f, f1 score: %.4f'
            % (a, b, c, d, e, f1))

        from datasets.datasets_utils_NAT import evaluate_undetected_SAE_examples
        evaluate_undetected_SAE_examples(X_test[50:], Y_test[50:],
                                         X_test_adv_discret[50:],
                                         Y_test_target[50:], y_label_pred[:50],
                                         targeted, Y_test_adv_pred[50:])

        # Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)
        #
        # rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret, Y_test_target.copy(), targeted,
        #                                     Y_test_adv_discret_pred)
        # #rec = evaluate_adversarial_examples(X_test_all, Y_test_all, X_test_all, Y_test_target_all.copy(), targeted,
        # #                                    Y_test_adv_discret_pred)
        # rec['dataset_name'] = FLAGS.dataset_name
        # rec['model_name'] = FLAGS.model_name
        # rec['attack_string'] = attack_string
        # rec['duration_per_sample'] = dur_per_sample
        # rec['discretization'] = True
        # to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'duration_per_sample',
        'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist',
        'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        show_imgs_in_rows(rows, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.

    # 6. Evaluate robust classification techniques.
    # Example: --robustness \
    #           "Base;FeatureSqueezing?squeezer=bit_depth_1;FeatureSqueezing?squeezer=median_filter_2;"
    if FLAGS.robustness != '':
        """
        Test the accuracy with robust classifiers.
        Evaluate the accuracy on all the legitimate examples.
        """
        from robustness import evaluate_robustness
        result_folder_robustness = os.path.join(FLAGS.result_folder,
                                                "robustness")
        fname_prefix = "%s_%s_robustness" % (task_id, attack_string_hash)
        evaluate_robustness(FLAGS.robustness, model, Y_test_all, X_test_all, Y_test, \
                attack_string_list, X_test_adv_discretized_list,
                fname_prefix, selected_idx_vis, result_folder_robustness)

    # 7. Detection experiment.
    # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4,bilateral_filter_15_15_60;"
    if FLAGS.detection != '':
        from detections.base import DetectionEvaluator

        result_folder_detection = os.path.join(FLAGS.result_folder,
                                               "detection")
        csv_fname = "%s_attacks_%s_detection.csv" % (task_id,
                                                     attack_string_hash)
        de = DetectionEvaluator(model, result_folder_detection, csv_fname,
                                FLAGS.dataset_name)
        Y_test_all_pred = model.predict(X_test_all)
        de.build_detection_dataset(X_test_all, Y_test_all, Y_test_all_pred,
                                   selected_idx, X_test_adv_discretized_list,
                                   Y_test_adv_discretized_pred_list,
                                   attack_string_list, attack_string_hash,
                                   FLAGS.clip, Y_test_target_next,
                                   Y_test_target_ll)
        de.evaluate_detections(FLAGS.detection)