Ejemplo n.º 1
0
def grade_session_with_automatic_model(request,session_code):
    session = get_object_or_404(Session,code=session_code)
    task_name = session.task_def.name;
    ag_model_fn = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, 'ag_grading.bin');
    if not os.path.exists(ag_model_fn):
        return HttpResponse("No model."+ag_model_fn)
    
    temp_root=os.path.join('/var/tmp/autograding',session_code)
    if not os.path.exists(temp_root):
        os.makedirs(temp_root)
    
    create_flat_file.create_grading_flat_file(session.code,temp_root, [0,0,1])

    build_te_model.make_predictions_with_model(temp_root,ag_model_fn)
    (predictions,gt_url) = round_predictions.round_predictions(temp_root)

    (wrk,is_created)=Worker.objects.get_or_create(worker="AUTO-ADDITIVE-GROVES");

    resp=HttpResponse("Done.")
    for pred, ref in map(None,predictions,gt_url):
        submission_id = int(ref.split('\t')[0])
        resp.write("%d\t%d\n" % (submission_id,pred))
        subm = get_object_or_404(SubmittedTask,id=submission_id)
        (rcd,created)=ManualGradeRecord.objects.get_or_create(submission=subm,
                                                              worker=wrk);
        rcd.feedback="Computer-generated grade"
        rcd.quality=pred;
        rcd.save();

    return resp
Ejemplo n.º 2
0
def grade_session_with_automatic_model(request, session_code):
    session = get_object_or_404(Session, code=session_code)
    task_name = session.task_def.name
    ag_model_fn = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, "ag_grading.bin")
    if not os.path.exists(ag_model_fn):
        return HttpResponse("No model." + ag_model_fn)

    temp_root = os.path.join("/var/tmp/autograding", session_code)
    if not os.path.exists(temp_root):
        os.makedirs(temp_root)

    create_flat_file.create_grading_flat_file(session.code, temp_root, [0, 0, 1])

    build_te_model.make_predictions_with_model(temp_root, ag_model_fn)
    (predictions, gt_url) = round_predictions.round_predictions(temp_root)

    (wrk, is_created) = Worker.objects.get_or_create(worker="AUTO-ADDITIVE-GROVES")

    resp = HttpResponse("Done.")
    for pred, ref in map(None, predictions, gt_url):
        submission_id = int(ref.split("\t")[0])
        resp.write("%d\t%d\n" % (submission_id, pred))
        subm = get_object_or_404(SubmittedTask, id=submission_id)
        (rcd, created) = ManualGradeRecord.objects.get_or_create(submission=subm, worker=wrk)
        rcd.feedback = "Computer-generated grade"
        rcd.quality = pred
        rcd.save()

    return resp
Ejemplo n.º 3
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'xgb.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'xgb.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                preds = round_predictions(xgb_model.predict(X_test_2008))
                # DEBUG
                print("preds.shape" + str(preds.shape))
                make_submission_2008("submissions/xgb_2008.csv", preds)
            elif (arg == "2012"):
                preds = round_predictions(xgb_model.predict(X_test_2012))
                make_submission_2012("submissions/xgb_2012.csv", preds)
Ejemplo n.º 4
0
def build_model_from_session(request,session_code):
    session = get_object_or_404(Session,code=session_code)
    task_name = session.task_def.name;

    ag_model_fn = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, 'ag_grading.bin');

    ag_training_root = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, 'training');
    if not os.path.exists(ag_training_root):
        #os.rmdir(ag_training_root);
        os.makedirs(ag_training_root);

    temp_root=os.path.join('/var/tmp/autograding',session_code)
    if not os.path.exists(temp_root):
        os.makedirs(temp_root)

    resp=HttpResponse("Building grading model:\n",mimetype="text/plain")    
    resp.write("Creating data file\n")
    resp.flush()
    create_flat_file.create_grading_flat_file(session.code, ag_training_root, [0.5,0.25,0.25])
    resp.write(" done\n")


    resp.write("Learning the model on train+val\n")
    resp.flush()
    build_te_model.build_model(ag_training_root);
    resp.write(" done\n")

    ag_trained_model_fn=os.path.join(ag_training_root,'model.bin')
    build_te_model.make_predictions_with_model(ag_training_root,ag_trained_model_fn)

    resp.write("Predicting on the testset\n")
    resp.flush()
    round_predictions.round_predictions(ag_training_root)
    resp.write(" done\n")
    resp.write("----------------\n")
    resp.write("Testset report\n")
    rpt_fn=os.path.join(ag_training_root,'preds.txt.report.txt')
    for s in open(rpt_fn,'r').readlines():
        resp.write(s)
    
    shutil.copyfile(ag_trained_model_fn,ag_model_fn)
    return resp
Ejemplo n.º 5
0
def build_model_from_session(request, session_code):
    session = get_object_or_404(Session, code=session_code)
    task_name = session.task_def.name

    ag_model_fn = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, "ag_grading.bin")

    ag_training_root = os.path.join(AUTOGRADING_MODEL_ROOT, task_name, "training")
    if not os.path.exists(ag_training_root):
        # os.rmdir(ag_training_root);
        os.makedirs(ag_training_root)

    temp_root = os.path.join("/var/tmp/autograding", session_code)
    if not os.path.exists(temp_root):
        os.makedirs(temp_root)

    resp = HttpResponse("Building grading model:\n", mimetype="text/plain")
    resp.write("Creating data file\n")
    resp.flush()
    create_flat_file.create_grading_flat_file(session.code, ag_training_root, [0.5, 0.25, 0.25])
    resp.write(" done\n")

    resp.write("Learning the model on train+val\n")
    resp.flush()
    build_te_model.build_model(ag_training_root)
    resp.write(" done\n")

    ag_trained_model_fn = os.path.join(ag_training_root, "model.bin")
    build_te_model.make_predictions_with_model(ag_training_root, ag_trained_model_fn)

    resp.write("Predicting on the testset\n")
    resp.flush()
    round_predictions.round_predictions(ag_training_root)
    resp.write(" done\n")
    resp.write("----------------\n")
    resp.write("Testset report\n")
    rpt_fn = os.path.join(ag_training_root, "preds.txt.report.txt")
    for s in open(rpt_fn, "r").readlines():
        resp.write(s)

    shutil.copyfile(ag_trained_model_fn, ag_model_fn)
    return resp
Ejemplo n.º 6
0
def pred_2008():
    lasso_unrounded = modified_predict(lasso, X_test_2008)
    ridge_unrounded = modified_predict(ridge, X_test_2008)
    mlp_unrounded = modified_predict(mlp, X_test_2008)
    xgb_unrouned = xgb_2008.reshape(-1, 1)
    rand_forest_unrounded = modified_predict(rand_forest, X_test_2008)
    adaboost_ran_forest_unrounded = modified_predict(adaboost_ran_forest,
                                                     X_test_2008)
    adaboost_unrounded = modified_predict(adaboost, X_test_2008)

    total = xgb_score + adaboost_ran_forest_score + adaboost_score + mlp_score + \
        lasso_score + rand_forest_score + ridge_score

    lasso_weight = lasso_score / total
    ridge_weight = ridge_score / total
    xgb_weight = xgb_score / total
    adaboost_ran_forest_weight = adaboost_ran_forest_score / total
    adaboost_weight = adaboost_score / total
    mlp_weight = mlp_score / total
    rand_forest_weight = rand_forest_score / total

    lasso_2008 = lasso_weight * lasso_unrounded
    ridge_2008 = ridge_weight * ridge_unrounded
    xgb_2008_weighted = xgb_weight * xgb_unrouned
    adaboost_ran_forest_2008 = adaboost_ran_forest_weight * adaboost_ran_forest_unrounded
    adaboost_2008 = adaboost_weight * adaboost_unrounded
    mlp_2008 = mlp_weight * mlp_unrounded
    rand_forest_2008 = rand_forest_weight * rand_forest_unrounded

    lasso_unrounded = 0
    ridge_unrounded = 0
    mlp_unrounded = 0
    xgb_unrouned = 0
    rand_forest_unrounded = 0
    adaboost_ran_forest_unrounded = 0
    adaboost_unrounded = 0

    print "Starting Adding"
    temp1 = np.add(np.add(lasso_2008, ridge_2008), xgb_2008_weighted)
    print "Halway Through Adding"
    temp2 = np.add(
        np.add(np.add(adaboost_ran_forest_2008, adaboost_2008), mlp_2008),
        rand_forest_2008)
    ensemble = np.add(temp1, temp2)
    print "Done Adding!"

    temp1 = 0
    temp2 = 0

    print ensemble
    ensemble = round_predictions(ensemble)
    print "Min of ensemble: ", np.min(ensemble), ". Max: ", np.max(ensemble)
    return ensemble
Ejemplo n.º 7
0
def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'xgb.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'xgb.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                preds = round_predictions(xgb_model.predict(X_test_2008))
                # DEBUG
                print("preds.shape" + str(preds.shape))
                make_submission_2008("submissions/xgb_2008.csv", preds)
            elif (arg == "2012"):
                preds = round_predictions(xgb_model.predict(X_test_2012))
                make_submission_2012("submissions/xgb_2012.csv", preds)


if __name__ == "__main__":
    main(sys.argv[1:])
    preds = round_predictions(xgb_model.predict(X_train_2008))
    train_error = np.mean(preds == Y_train_2008)
    print("XGB train error = " + str(train_error))

    ver_preds = round_predictions(xgb_model.predict(X_ver_2008))
    ver_error = np.mean(ver_preds == Y_ver_2008)
    print("XGB ver error = " + str(ver_error))
Ejemplo n.º 8
0
lasso = read_make_pkl("saved_objs/lasso.pkl", gen_lasso)


def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'lasso.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'lasso.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                preds = round_predictions(lasso.predict(X_test_2008))
                # DEBUG
                print("lasso.predict(X_test_2008).shape" +
                      str(lasso.predict(X_test_2008).shape))
                make_submission_2008("submissions/lasso_2008.csv", preds)
            elif (arg == "2012"):
                preds = round_predictions(lasso.predict(X_test_2012))
                make_submission_2012("submissions/lasso_2012.csv", preds)


if __name__ == "__main__":
    main(sys.argv[1:])
    preds = round_predictions(lasso.predict(X_train_2008))
    train_error = np.mean(preds == Y_train_2008)
    print("Lasso train error = " + str(train_error))
Ejemplo n.º 9
0
def lin_reg_modified_predict(model, X):
    preds = model.predict(X).reshape(-1, 1)
    mpreds = round_predictions(preds)
    # Debug
    print("mpreds.shape: " + str(mpreds.shape))
    return mpreds
Ejemplo n.º 10
0
ridge = read_make_pkl("saved_objs/ridge.pkl", gen_ridge)


def main(argv):
    try:
        opts, args = getopt.getopt(argv, "ho:", ["output="])
    except getopt.GetoptError:
        print 'ridge.py [-o [2008] [2012]]'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'ridge.py [-o [2008] [2012]]'
            sys.exit()
        elif opt in ("-o", "--output"):
            if (arg == "2008"):
                preds = round_predictions(ridge.predict(X_test_2008))
                # DEBUG
                print("ridge.predict(X_test_2008).shape" +
                      str(ridge.predict(X_test_2008).shape))
                make_submission_2008("submissions/ridge_2008.csv", preds)
            elif (arg == "2012"):
                preds = round_predictions(ridge.predict(X_test_2012))
                make_submission_2012("submissions/ridge_2012.csv", preds)


if __name__ == "__main__":
    main(sys.argv[1:])
    preds = round_predictions(ridge.predict(X_train_2008))
    train_error = np.mean(preds == Y_train_2008)
    print("Ridge train error = " + str(train_error))