Ejemplo n.º 1
0
def proposal_layer_3d_STI(gt_3d, bounding, num):

    boxes_cnt = num * 3
    boxes_remain = num * 2

    xy_pos = 14.0 * random.randn(boxes_cnt, 2)
    z_pos = random.rand(boxes_cnt, 1) * 0.2 - 0.2
    centers = np.hstack((xy_pos, z_pos))
    score_rpn = np.array([0.8])
    score_gt = np.array([0.9])
    size = np.array(cfg.ANCHOR)
    # the category [1.,4.] is used for rpn label and vispy label,so don't change it rashly
    gt_boxes = np.array([
        np.hstack((gt_3d[i][0:3], size, score_gt, np.array([1.])))
        for i in range(gt_3d.shape[0])
    ],
                        dtype=np.float32)
    gt_cnt = gt_boxes.shape[0]
    rpn_boxes = np.array([
        np.hstack((centers[i], size, score_rpn, np.array([0.])))
        for i in range(boxes_cnt)
    ],
                         dtype=np.float32)
    indice_inside = np.where((rpn_boxes[:, 0] >= -bounding)
                             & (rpn_boxes[:, 0] <= bounding)
                             & (rpn_boxes[:, 1] >= -bounding)
                             & (rpn_boxes[:, 1] <= bounding))[0]
    rpn_filter_boxes = rpn_boxes[indice_inside]
    all_boxes = np.vstack((gt_boxes, rpn_filter_boxes))

    all_boxes_bv = lidar_3d_to_bv(all_boxes[:, 0:6])
    scores = all_boxes[:, 6:7]
    beg = datetime.datetime.now()
    keep = nms(np.hstack((all_boxes_bv, scores)), 0.6, force_cpu=False)
    end2 = datetime.datetime.now()
    keep = keep[:boxes_remain]
    filter_all_boxes = all_boxes[keep]
    gt_cnt_filter = len(np.where(filter_all_boxes[:, -1] == 4)[0])
    if gt_cnt > gt_cnt_filter:
        print 'Warning ! in Func:proposal_layer_3d_STI,one than one groundtruth has been filtered by nms  '
    blob_3d = filter_all_boxes
    if DEBUG:
        print 'boxes number:{}'.format(blob_3d.shape[0])
        print 'NMS use time:', end2 - beg

    return blob_3d
Ejemplo n.º 2
0
def proposal_layer_3d(rpn_cls_prob_reshape,
                      rpn_bbox_pred,
                      im_info,
                      gt_bv,
                      cfg_key,
                      _feat_stride=[8, 8]):
    # Algorithm:
    #
    # for each (H, W) location i
    #   generate A anchor boxes centered on cell i
    #   apply predicted bbox deltas at cell i to each of the A anchors
    # clip predicted boxes to image
    # remove predicted boxes with either height or width < threshold
    # sort all (proposal, score) pairs by score from highest to lowest
    # take top pre_nms_topN proposals before NMS
    # apply NMS with threshold 0.7 to remaining proposals
    # take after_nms_topN proposals after NMS
    # return the top proposals (-> RoIs top, scores top)

    # layer_params = yaml.load(self.param_str_)

    beg = datetime.datetime.now()
    _anchors = generate_anchors_bv()
    _num_anchors = _anchors.shape[0]
    im_info = im_info[0]
    assert rpn_cls_prob_reshape.shape[
        0] == 1, 'Only single item batches are supported'
    # cfg_key = str(self.phase) # either 'TRAIN' or 'TEST'
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
    # the first set of _num_anchors channels are bg probs
    # the second set are the fg probs, which we want

    height, width = rpn_cls_prob_reshape.shape[1:3]
    scores = np.reshape(
        np.reshape(rpn_cls_prob_reshape,
                   [1, height, width, _num_anchors, 2])[:, :, :, :, 1],
        [1, height, width, _num_anchors
         ])  # extract the second kind (fg) scores
    bbox_deltas = rpn_bbox_pred
    if DEBUG:
        print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
        print 'rpn_bbox_pred shape : {}'.format(rpn_bbox_pred.shape)

    # 1. Generate proposals from bbox deltas and shifted anchors
    if DEBUG:
        print 'score map size: {}'.format(scores.shape)
        pass

    # Enumerate all shifts
    shift_x = np.arange(0, width) * _feat_stride[0]
    shift_y = np.arange(0, height) * _feat_stride[1]
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                        shift_y.ravel())).transpose()
    # Enumerate all shifted anchors:
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors
    K = shifts.shape[0]
    anchors = _anchors.reshape((1, A, 4)) + shifts.reshape(
        (1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4))
    # print "anchors shape: ", anchors.shape
    # Transpose and reshape predicted bbox transformations to get them
    # into the same order as the anchors:
    #
    # bbox deltas will be (1, 4 * A, H, W) format
    # transpose to (1, H, W, 4 * A)
    # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
    # in slowest to fastest order
    # bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 6))
    bbox_deltas = bbox_deltas.reshape((-1, 3))  # delta x delta y delta z
    # Same story for the scores:
    #
    # scores are (1, A, H, W) format
    # transpose to (1, H, W, A)
    # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a)
    # scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))
    scores = scores.reshape((-1, 1))

    if DEBUG:
        print "anchors before filter"
        print "anchors shape: ", anchors.shape
        print "scores shape: ", scores.shape
    ###
    # only keep anchors inside the image
    inds_inside = _filter_anchors(anchors, im_info, allowed_border=0)
    anchors = anchors[inds_inside, :]
    scores = scores[inds_inside]
    bbox_deltas = bbox_deltas[inds_inside, :]
    ####

    # convert anchors bv to anchors_3d
    anchors_3d = bv_anchor_to_lidar(anchors)
    # Convert anchors into proposals via bbox transformations
    proposals_3d = bbox_transform_inv_3d(anchors_3d, bbox_deltas)
    # convert back to lidar_bv
    proposals_bv = lidar_3d_to_bv(proposals_3d)
    if DEBUG:
        print "after filter"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape
        print "scores shape: ", scores.shape

    # # 2. clip predicted boxes to image
    # proposals_bv = clip_boxes(proposals_bv, im_info[:2])

    # # 3. remove predicted boxes with either height or width < threshold
    # # (NOTE: convert min_size to input image scale stored in im_info[2])
    # keep = _filter_boxes(proposals_bv, min_size * im_info[2])
    # proposals_bv = proposals_bv[keep, :]
    # proposals_3d = proposals_3d[keep, :]
    # # proposals_img = proposals_img[keep, :]
    # scores = scores[keep]

    # keep = _filter_img_boxes(proposals_img, [375, 1242])
    # proposals_bv = proposals_bv[keep, :]
    # proposals_3d = proposals_3d[keep, :]
    # proposals_img = proposals_img[keep, :]
    # scores = scores[keep]

    # print "proposals_img shape: ", proposals_img.shape
    # 4. sort all (proposal, score) pairs by score from highest to lowest
    # 5. take top pre_nms_topN (e.g. 6000)
    order = scores.ravel().argsort()[::-1]
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals_bv = proposals_bv[order, :]
    proposals_3d = proposals_3d[order, :]
    # proposals_img = proposals_img[order, :]
    scores = scores[order]

    # 6. apply nms (e.g. threshold = 0.7)
    # 7. take after_nms_topN (e.g. 300)
    # 8. return the top proposals (-> RoIs top)
    if DEBUG:
        print "proposals before nms"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape

    keep = nms(np.hstack((proposals_bv, scores)), nms_thresh, force_cpu=False)
    if DEBUG:
        print keep
        print 'keep.shape', len(keep)
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals_bv = proposals_bv[keep, :]
    proposals_3d = proposals_3d[keep, :]
    # proposals_img = proposals_img[keep, :]
    scores = scores[keep]
    if DEBUG:
        num = np.sort(scores.ravel())
        num = num[::-1]
        print num
    if DEBUG:
        print "proposals after nms"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape
    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    length = proposals_bv.shape[0]
    box_labels, thetas, recall = valid_pred(proposals_bv, gt_bv, length,
                                            cfg.TRAIN.RPN_POSITIVE_OVERLAP)
    blob_bv = np.hstack((proposals_bv.astype(np.float32, copy=False), scores,
                         box_labels.reshape(length,
                                            -1), thetas.reshape(length, -1)))
    blob_3d = np.hstack((proposals_3d.astype(np.float32, copy=False), scores,
                         box_labels.reshape(length,
                                            -1), thetas.reshape(length, -1)))
    end2 = datetime.datetime.now()
    if DEBUG:
        print 'NMS & bbox use time:', end2 - beg

    return blob_bv, blob_3d, recall
Ejemplo n.º 3
0
def generate_rpn(rpn_cls_prob_reshape,
                 rpn_bbox_pred,
                 im_info,
                 cfg_key,
                 _feat_stride=[8, 8]):  # for Test processing

    test_debug = False
    start = datetime.datetime.now()
    _anchors = generate_anchors_bv()
    _num_anchors = _anchors.shape[0]
    im_info = im_info[0]
    assert rpn_cls_prob_reshape.shape[
        0] == 1, 'Only single item batches are supported'
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    height, width = rpn_cls_prob_reshape.shape[1:3]
    scores = np.reshape(
        np.reshape(rpn_cls_prob_reshape,
                   [1, height, width, _num_anchors, 2])[:, :, :, :, 1],
        [1, height, width, _num_anchors
         ])  # extract the second kind (fg) scores
    bbox_deltas = rpn_bbox_pred
    if test_debug:
        print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
        print 'rpn_bbox_pred shape : {}'.format(rpn_bbox_pred.shape)

    # 1. Generate proposals from bbox deltas and shifted anchors
    if test_debug:
        print 'score map size: {}'.format(scores.shape)
        pass

    # Enumerate all shifts
    # TODO: replace generate anchors by load from file
    shift_x = np.arange(0, width) * _feat_stride[0]
    shift_y = np.arange(0, height) * _feat_stride[1]
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                        shift_y.ravel())).transpose()
    # Enumerate all shifted anchors:
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors
    K = shifts.shape[0]
    anchors = _anchors.reshape((1, A, 4)) + shifts.reshape(
        (1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4))
    bbox_deltas = bbox_deltas.reshape((-1, 3))  # delta x delta y delta z
    scores = scores.reshape((-1, 1))

    if test_debug:
        print "anchors before filter"
        print "anchors shape: ", anchors.shape
        print "scores shape: ", scores.shape

    # only keep anchors inside the image
    inds_inside = _filter_anchors(anchors, im_info, allowed_border=0)
    anchors = anchors[inds_inside, :]
    scores = scores[inds_inside]
    bbox_deltas = bbox_deltas[inds_inside, :]

    # convert anchors bv to anchors_3d
    anchors_3d = bv_anchor_to_lidar(anchors)
    # Convert anchors into proposals via bbox transformations
    proposals_3d = bbox_transform_inv_3d(anchors_3d, bbox_deltas)
    # convert back to lidar_bv
    proposals_bv = lidar_3d_to_bv(proposals_3d)
    if test_debug:
        print "after filter"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape
        print "scores shape: ", scores.shape

    order = scores.ravel().argsort()[::-1]
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals_bv = proposals_bv[order, :]
    proposals_3d = proposals_3d[order, :]
    scores = scores[order]

    # 6. apply nms (e.g. threshold = 0.7)
    # 7. take after_nms_topN (e.g. 300)
    # 8. return the top proposals (-> RoIs top)
    if test_debug:
        print "proposals before nms"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape

    keep = nms(np.hstack((proposals_bv, scores)), nms_thresh, force_cpu=False)
    if test_debug:
        print keep
        print 'keep.shape', len(keep)
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals_bv = proposals_bv[keep, :]
    proposals_3d = proposals_3d[keep, :]
    # proposals_img = proposals_img[keep, :]
    scores = scores[keep]

    if test_debug:
        print "proposals after nms"
        print "proposals_bv shape: ", proposals_bv.shape
        print "proposals_3d shape: ", proposals_3d.shape

    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    length = proposals_bv.shape[0]
    blob_bv = np.hstack((proposals_bv.astype(np.float32, copy=False), scores,
                         np.zeros((length, 1), dtype=np.float32)))
    blob_3d = np.hstack((proposals_3d.astype(np.float32, copy=False), scores,
                         np.zeros((length, 1), dtype=np.float32)))
    end = datetime.datetime.now()

    if test_debug:
        pass
        print 'NMS & bbox use time:', end - start

    return blob_bv, blob_3d