Ejemplo n.º 1
0
    def constrain(self, constraints):

        #algorithm 1.  Use pre-defined crystal_systems to give hard-coded restraints.
        # dps_core.constrainment.s_minimizer uses LBFGS minimizer to adapt
        # all 9 components of the orientation matrix.   This gives the best-fit
        # to the starting matrix (better than algorithm #2), but the disadvantage
        # is that it is keyed to the crystal_system descriptors.  It is therefore
        # not adapted to all small-molecule space groups (monoclinics),
        # and will not take into account non-standard settings.

        if constraints in [
                "triclinic", "monoclinic", 'orthorhombic', 'tetragonal',
                "cubic", "rhombohedral", 'hexagonal'
        ]:

            from rstbx.dps_core.constrainment import s_minimizer
            S = s_minimizer(self, constraint=constraints)
            return S.newOrientation()

        #algorithm 2:  Tensor_rank_2 symmetrization
        # Advantages:  constraints are calculated directly from the space
        # group, so will account for non-standard settings.
        # Disadvantages:  drift away from starting orientation is greater than
        # for algorithm #1.

        from cctbx.sgtbx import space_group
        if isinstance(constraints, space_group):

            from rstbx.symmetry.constraints import AGconvert
            converter = AGconvert()
            converter.forward(self)
            average_cell = constraints.average_unit_cell(self.unit_cell())
            converter.validate_and_setG(
                average_cell.reciprocal().metrical_matrix())
            return Orientation(converter.back(), basis_type.reciprocal)
Ejemplo n.º 2
0
def finite_difference_test(orient):
    from rstbx.symmetry.constraints import AGconvert as AG
    from labelit.symmetry.metricsym.a_g_conversion import pp
    from libtbx.tst_utils import approx_equal
    adaptor = AG()
    adaptor.forward(orient)
    grad = g_gradients(adaptor, symred=None)
    epsilon = 1.E-10

    dAij_dphi = grad.get_all_da()[0]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi + x * epsilon, adaptor.psi, adaptor.theta)
        AGback.G = adaptor.G
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dphi: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dphi))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dphi, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dpsi = grad.get_all_da()[1]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi + x * epsilon, adaptor.theta)
        AGback.G = adaptor.G
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dpsi: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dpsi))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dpsi, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dtheta = grad.get_all_da()[2]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta + x * epsilon)
        AGback.G = adaptor.G
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dtheta: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dtheta))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dtheta, diff_mat, 1.E-7)): raise Exception(rule)

    g0, g1, g2, g3, g4, g5 = adaptor.G

    dAij_dg0 = grad.get_all_da()[3]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0 + x * epsilon, g1, g2, g3, g4, g5)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg0: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg0))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg0, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dg1 = grad.get_all_da()[4]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0, g1 + x * epsilon, g2, g3, g4, g5)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg1: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg1))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg1, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dg2 = grad.get_all_da()[5]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0, g1, g2 + x * epsilon, g3, g4, g5)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg2: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg2))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg2, diff_mat, 1.E-6)): raise Exception(rule)

    dAij_dg3 = grad.get_all_da()[6]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0, g1, g2, g3 + x * epsilon, g4, g5)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg3: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg3))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg3, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dg4 = grad.get_all_da()[7]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0, g1, g2, g3, g4 + x * epsilon, g5)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg4: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg4))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg4, diff_mat, 1.E-7)): raise Exception(rule)

    dAij_dg5 = grad.get_all_da()[8]
    AGback = AG()
    F = []
    for x in [-1., 1.]:
        AGback.setAngles(adaptor.phi, adaptor.psi, adaptor.theta)
        AGback.G = (g0, g1, g2, g3, g4, g5 + x * epsilon)
        F.append(flex.double(AGback.back()))
    diff_mat = (F[1] - F[0]) / (2. * epsilon)
    rule = "dAij_dg5: Analytical gradient vs. finite difference gradient\n"+\
           pp(list(dAij_dg5))+"\n"+\
           pp(diff_mat)
    if not (approx_equal(dAij_dg5, diff_mat, 1.E-6)): raise Exception(rule)