Ejemplo n.º 1
0
def run_validate_images(validated_image_list, graph, index, testOutputList,
                        testOutputFileList):

    for validated_image_filename in validated_image_list:
        validated_image = cv2.imread(VALIDATED_IMAGES_DIR +
                                     validated_image_filename)
        valid_output_full = run_inference(validated_image, graph,
                                          validated_image_filename)
        valid_output = rmsList(valid_output_full, 13)
        #print("valid_output=",valid_output)
        validTupl = toRecTuple(valid_output)
        #print("validTuble=",validTupl)
        hits = list(index.nearest(validTupl, objects=True))
        hitsId = [str(item.id) + " -- " + item.object for item in hits]
        for h in hitsId:
            print("R-tree for: " + validated_image_filename + ' matches ' + h)

        # Test the inference results of this image with the results
        # from the known valid face.
        idx_nr = 0
        for test_output_full in testOutputList:
            (fm, fmdiff) = face_match(valid_output_full, test_output_full)
            if (fm):
                print('PASS!  test ' + validated_image_filename + ' matches ' +
                      testOutputFileList[idx_nr] + ' id=' + str(idx_nr) +
                      ' diff=' + str(fmdiff))
            idx_nr = idx_nr + 1
Ejemplo n.º 2
0
def search_index(index, validTupl, validated_image_filename):
    nearHits = list(index.nearest(validTupl, objects=True))
    nearHitsId = [str(item.id) + " -- " + item.object for item in nearHits]
    for h in nearHitsId:
        print("R-tree near for: " + validated_image_filename + ' matches ' + h)

    intrHits = list(index.intersection(validTupl, objects=True))
    intrHitsId = [str(item.id) + " -- " + item.object for item in intrHits]
    for h in intrHitsId:
        print("R-tree intersect for: " + validated_image_filename +
              ' matches ' + h)
Ejemplo n.º 3
0
def run_validate_images(validated_image_list, graph, index, testOutputList):

    for validated_image_filename in validated_image_list:
        validated_image = cv2.imread(VALIDATED_IMAGES_DIR +
                                     validated_image_filename)
        valid_output_full = run_inference(validated_image, graph,
                                          validated_image_filename)
        valid_output = rmsList(valid_output_full, 13)
        #print("valid_output=",valid_output)
        validTupl = toRecTuple(valid_output)
        #print("validTuble=",validTupl)
        a = list(index.nearest(validTupl))
        print("R-tree near: ", a)

        # Test the inference results of this image with the results
        # from the known valid face.
        idx_nr = 0
        for test_output_full in testOutputList:
            if (face_match(valid_output_full, test_output_full)):
                print('PASS!  idx ' + str(idx_nr) + ' matches ' +
                      validated_image_filename)
            idx_nr = idx_nr + 1