def main(): global iteration run.init() bots = [] b = Bot(Para()) b.run() bots.append(b) for s in seeds: b = Bot(Para()) b.p.p = list(s) b.run() bots.append(b) iteration = 0 while True: iteration += 1 print 'iteration', iteration crossover_count = 3 more_bots = [] for i in range(crossover_count): b1 = Bot(None) b2 = Bot(None) for i in range(num_tournament): b = random.choice(bots) if sum(b.score) > sum(b1.score): b1 = b b = random.choice(bots) if sum(b.score) > sum(b2.score): b2 = b winner = Bot(b1.p.crossover(b2.p)) more_bots.append(winner) bots = uniq(bots + more_bots) for b in bots: if b.score == [0]: b.run() bots.sort(key=lambda p: sum(p.score), reverse=True) bots = bots[:population] # mutation for b in bots[:len(bots)/4]: if random.random() < mutation_rate*4: b = b.clone() b.p.mutate() bots.append(b) bots = uniq(bots) for b in bots: if b.score == [0]: b.run() print '-'*30 bots.sort(key=lambda p: sum(p.score), reverse=True) print [sum(b.score) for b in bots]
#!/usr/bin/python import run run.init() import sys import datetime import inbox from icalendar import UTC import ARCADE def main(): # Read the descriptions and the table from arcade print "Running ARCADE... (cross your fingers now) ", sys.stdout.flush() input = ARCADE.ArcadeClient().getTimetable() print "OK! (Probably.)" # Get the parts from the ARCADE output. parts = inbox.get_parts(input) # Use the current time as the timestamp. time_stamp = datetime.datetime.now(UTC) # Write the iCal file run.run_with_input(parts, time_stamp)
import argparse import codecs from datetime import datetime from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.exc import NoResultFound from run import db, init from models import Person, Bankcard, User, PayBook, PayBookItem init() Session = sessionmaker(bind=db.engine) def _normal_from_line(line): idcard, remark = map( lambda s: s.decode('utf-8'), line.split(',')) remark = remark.rstrip('\r').rstrip('\n') if remark != 'normal'.decode('utf-8'): return False session = Session() try: person = session.query(Person).filter( Person.idcard == idcard).one() except NoResultFound: return False if not person.can_normal: return False person.normal() session.commit() session.close() return True
sys.stdout.write("Versions: \n") sys.stdout.write(" CUDA: %s\n" % torch.version.cuda) sys.stdout.write(" cuDNN: %s\n" % torch.backends.cudnn.version()) sys.stdout.write("Memory Usage:\n") sys.stdout.write( " Max Alloc: %g GB\n" % round(torch.cuda.max_memory_allocated(cur_device) / 1024**3, 1)) sys.stdout.write( " Allocated: %g GB\n" % round(torch.cuda.memory_allocated(cur_device) / 1024**3, 1)) sys.stdout.write( " Cached: %g GB\n" % round(torch.cuda.memory_reserved(cur_device) / 1024**3, 1)) sys.stdout.write("\n") else: device = 'cpu' sys.stdout.write("You are using CPU.\n") method = "2" data_path = "../data/WA_Fn-UseC_-HR-Employee-Attrition.csv" sys.stdout.write("You chose the method %s.\n" % method) sys.stdout.write("Data path: %s\n" % data_path) sys.stdout.write('\n') run.init(device, data_path, "method_" + method) run.train() accuracy = run.evaluate("valid") sys.stdout.write("Accuracy: %.2f%%\n" % (accuracy * 100))
open(config.path_data, 'rb')) train_batches = get_batches(train_df, config.batch_size) dev_batches = get_batches(dev_df, config.batch_size) test_batches = get_batches(test_df, config.batch_size) config = update_config(config, train_batches, dev_batches, word_to_idx, bow_idxs) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu np.random.seed(config.seed) random.seed(config.seed) # buiild model sess, model, saver = load(config) # initialize log epoch, log_df, logger = init(config, trash=False) train_batches_iterator = get_batches_iterator(train_batches, config.log_period) # run model epoch_iterator = iter(range(epoch, config.n_epochs)) for epoch in takewhile(lambda epoch: epoch is not None, epoch_iterator): for log_batches in takewhile(lambda log_batches: log_batches is not None, train_batches_iterator): sess, model, saver, log_df, nan_flg = train(sess, model, saver, log_batches, dev_batches, test_batches, log_df, logger,