if __name__ == "__main__": import time start = time.time() G = nx.read_gpickle("../../graphs/hep.gpickle") print 'Read graph G' print time.time() - start model = "MultiValency" if model == "MultiValency": ep_model = "range" elif model == "Random": ep_model = "random" elif model == "Categories": ep_model = "degree" # get propagation probabilities Ep = dict() with open("Ep_hep_%s1.txt" %ep_model) as f: for line in f: data = line.split() Ep[(int(data[0]), int(data[1]))] = float(data[2]) I = 1000 S = newGreedyIC(G, 10, Ep) print S print avgIAC(G, S, Ep, I)
def mapAvgSize (S): return runIAC.avgIAC(G, S, Ep, I)
def mapAvgSize(S): return runIAC.avgIAC(G, S, Ep, I)
def mapAvgSize (args): G, S, Ep, I = args return avgIAC(G, S, Ep, I)