Ejemplo n.º 1
0
def validPerturbatorInternalresults():
    model_name = "BouncingBall"
    std_run_results = simu_run_info.SimulationResults(StringIO(bb_std_run_str),
                                                      "BouncingBall",
                                                      "/path/to/exe", "output")
    # Prepare "e" parameter run
    e_perturbed_param_info = simu_run_info.PerturbedParameterInfo(
        "e", 0.7, 0.735)
    e_run_results = simu_run_info.SimulationResults(
        StringIO(bb_e_perturbed_str), "BouncingBall", "/path/to/exe", "output")
    # Prepare "g" parameter run
    g_perturbed_param_info = simu_run_info.PerturbedParameterInfo(
        "g", 9.81, 10.3005)
    g_run_results = simu_run_info.SimulationResults(
        StringIO(bb_g_perturbed_str), "BouncingBall", "/path/to/exe", "output")
    return e_perturbed_param_info, e_run_results, g_perturbed_param_info, g_run_results, model_name, std_run_results
Ejemplo n.º 2
0
    def runsPerturbedParameters(self, communicator=None):

        # Get the cartesian product of all possible values
        cart_prod_dict = dict_product(self.sweep_values_per_param)

        # Iterate all the combinations instantiating the "PerturbedParameterInfo" objects
        perturbed_parameters_infos = []
        cart_prod_dict = list(cart_prod_dict)
        if communicator is not None:
            communicator.set_total_progress_messages(len(cart_prod_dict) + 1)
        for vals_comb in cart_prod_dict:
            if communicator is not None:
                communicator.update_completed(1)
            run_perturbed_params = []
            for param_name in vals_comb:
                param_default_val = self.params_defaults[param_name]
                param_perturbed_val = vals_comb[param_name]
                perturbed_param_info = simu_run_info.PerturbedParameterInfo(param_name, param_default_val,
                                                                            param_perturbed_val)
                run_perturbed_params.append(perturbed_param_info)
            # Before adding this run, check if all params have been perturbed and it's not the std run
            param_is_default_list = [p.default_val == p.new_val for p in run_perturbed_params]
            if not all(param_is_default_list):
                # If at least one parameter has been perturbed, add it to the list
                perturbed_parameters_infos.append(run_perturbed_params)
        return perturbed_parameters_infos
Ejemplo n.º 3
0
 def sweepResultsExample(self):
     # Generate dataframe
     df_std_run = pandas.read_csv(StringIO(bb_std_run_str), index_col=0)
     model_name = "BouncingBall"
     std_run = simu_run_info.SimulationResults(StringIO(bb_std_run_str),
                                               model_name, "/path/to/exe",
                                               "")
     # Simulate perturbations by multiplying variables
     perturbed_runs = []
     for i in range(1, 9):
         df_perturbed_i = df_std_run.copy()
         df_perturbed_i["v"] = df_perturbed_i.apply(lambda row: row["v"] *
                                                    (1 + i / 8),
                                                    axis=1)
         run_output_name = "run_{0}.csv".format(i)
         run_output_path = os.path.join(self._temp_dir, run_output_name)
         df_perturbed_i.to_csv(run_output_path)
         # Pretend that e is always changed to 1 and g is swept in each run
         swept_param_info = simu_run_info.PerturbedParameterInfo("g", 0, i)
         swept_params_info_list = [swept_param_info]
         # The executable can be anything as we assume it has already been ran
         run_executable = "/path/to/exe"
         # The following object is for one one. We have to save sweep information alongside run information, so
         #  for now both infos are saved together. In the future, they must be saved separately and one must
         #  reference the other
         std_output = ""
         simu_results = simu_run_info.SimulationResults(
             run_output_path, model_name, run_executable, std_output)
         sweep_iteration_results = sweep.SweepIterationResults(
             simu_results, swept_params_info_list)
         perturbed_runs.append(sweep_iteration_results)
     sweep_params_swept = ["g"]
     sweep_params_fixed = [simu_run_info.PerturbedParameterInfo("e", 0, 1)]
     # The following object is the sweep in general. That is, for all runs
     sweep_specs = sweep.ParametersSweepResults(model_name,
                                                sweep_params_swept,
                                                sweep_params_fixed, std_run,
                                                perturbed_runs)
     # Var to analyze
     var_name = "h"
     # Returns sweep example objects
     return sweep_specs, var_name
Ejemplo n.º 4
0
def perturbationInfoForFixedParams(params_defaults, fixed_params_raw):
    fixed_params = []
    # Iterate all the combinations instantiating the "PerturbedParameterInfo" objects
    for fixed_param_pert_dict in fixed_params_raw:
        #Disaggregate fixed param perturbation info
        param_name = fixed_param_pert_dict["name"]
        param_perturbed_val    = fixed_param_pert_dict["value"]
        # Get default val
        param_default_val = params_defaults[param_name]
        # Initialize perturbation info object
        perturbed_param_info = simu_run_info.PerturbedParameterInfo(param_name, param_default_val,
                                                                    param_perturbed_val)
        fixed_params.append(perturbed_param_info)
    return fixed_params
Ejemplo n.º 5
0
 def runSimulations(self, dest_folder_path):
     # Make folder for runs
     runs_folder_name = "runs"
     runs_folder_path = os.path.join(dest_folder_path, runs_folder_name)
     files_aux.makeFolderWithPath(runs_folder_path)
     # Run STD run
     std_run_name = "std_run.csv"
     std_run_path = os.path.join(runs_folder_path, std_run_name)
     flags = "-noEventEmit"
     std_run_results = self.compiled_model.simulate(std_run_path,
                                                    optional_flags=flags)
     # Make dir for perturbed runs
     perturbed_runs_folder_name = "perturbed"
     perturbed_runs_folder_path = os.path.join(runs_folder_path,
                                               perturbed_runs_folder_name)
     files_aux.makeFolderWithPath(perturbed_runs_folder_path)
     # Run the simulations for each parameter perturbed in isolation
     runs_per_parameter = {}
     i = 0
     for param_name in self.values_per_param:
         # Get param info for its run
         param_default_val = self.params_defaults[param_name]
         param_perturbed_val = self.values_per_param[param_name]
         # Perturb the parameter
         self.compiled_model.setParameterStartValue(param_name,
                                                    param_perturbed_val)
         # Run the simulation
         simu_csv_name = "run_{0}.csv".format(i)
         simu_csv_path = os.path.join(perturbed_runs_folder_path,
                                      simu_csv_name)
         flags = "-noEventEmit"
         simu_results = self.compiled_model.simulate(simu_csv_path,
                                                     optional_flags=flags)
         # Return the parameter to its original value
         self.compiled_model.setParameterStartValue(param_name,
                                                    param_default_val)
         # Save the simulation results for this perturbed parameter
         perturbed_param_info = simu_run_info.PerturbedParameterInfo(
             param_name, param_default_val, param_perturbed_val)
         iter_results = OneParameterPerturbedResults(
             simu_results, perturbed_param_info)
         runs_per_parameter[param_name] = iter_results
         i = i + 1
     # Prepare the results instance
     isolated_perturbations_results = IsolatedPerturbationsResults(
         self.model_name, std_run_results, runs_per_parameter)
     return isolated_perturbations_results