Ejemplo n.º 1
0
def inputs():
    out = {}
    disc_fac = 0.9999
    num_states = 300
    num_buses = 200
    num_periods = 1000
    scale = 0.001
    init_dict = {
        "groups": "group_4",
        "binsize": 5000,
        "model_specifications": {
            "discount_factor": disc_fac,
            "number_states": num_states,
            "maint_cost_func": "linear",
            "cost_scale": scale,
        },
        "optimizer": {"approach": "NFXP", "algorithm": "scipy_L-BFGS-B"},
        "simulation": {
            "discount_factor": disc_fac,
            "seed": 123,
            "buses": num_buses,
            "periods": num_periods,
        },
    }
    out["trans_base"] = np.loadtxt(TEST_FOLDER + "repl_test_trans.txt")
    out["params_base"] = np.loadtxt(TEST_FOLDER + "repl_params_linear.txt")
    trans_mat = create_transition_matrix(num_states, out["trans_base"])
    costs = calc_obs_costs(num_states, lin_cost, out["params_base"], scale)
    ev_known = calc_fixp(trans_mat, costs, disc_fac)[0]
    df = simulate(init_dict["simulation"], ev_known, costs, trans_mat)
    result_trans, result_fixp = estimate(init_dict, df)
    out["trans_est"] = result_trans["x"]
    out["params_est"] = result_fixp["x"]
    out["status"] = result_fixp["status"]
    return out
Ejemplo n.º 2
0
def get_ev(params, trans_mat, obs_costs, disc_fac, alg_details):
    """
    A auxiliary function, which allows the log-likelihood function as well as its
    derivative to share the same fixed point and to avoid the need to execute the
    computation double.

    Parameters
    ----------
    params : numpy.array
        see :ref:`params`
    trans_mat : numpy.array
        see :ref:`trans_mat`
    obs_costs : numpy.array
        see :ref:`costs`
    disc_fac : numpy.float
        see :ref:`disc_fac`

    Returns
    -------
    ev : numpy.array
        see :ref:`ev`

    """
    global ev_intermed
    global current_params
    if (ev_intermed is not None) & np.array_equal(current_params, params):
        ev = ev_intermed
        ev_intermed = None
    else:
        ev = calc_fixp(trans_mat, obs_costs, disc_fac, **alg_details)
        ev_intermed = ev
        current_params = params
    return ev
Ejemplo n.º 3
0
def test_regression_simulation(inputs):
    init_dict = random_init(inputs)

    # Draw parameter
    param_1 = np.random.normal(17.5, 2)
    param_2 = np.random.normal(21, 2)
    param_3 = np.random.normal(-2, 0.1)
    param_4 = np.random.normal(0.2, 0.1)
    params = np.array([param_1, param_2, param_3, param_4])

    disc_fac = init_dict["simulation"]["discount_factor"]
    probs = np.array(init_dict["simulation"]["known_trans"])
    num_states = 800

    trans_mat = create_transition_matrix(num_states, probs)

    costs = calc_obs_costs(num_states, cubic_costs, params, 0.00001)

    ev = calc_fixp(trans_mat, costs, disc_fac)[0]

    df = simulate(init_dict["simulation"], ev, costs, trans_mat)

    v_disc = discount_utility(df, disc_fac)

    assert_allclose(v_disc / ev[0], 1, rtol=1e-02)
Ejemplo n.º 4
0
def simulate_data(
    seed,
    disc_fac,
    num_buses,
    num_periods,
    num_states,
    cost_params,
    trans_params,
    cost_func,
    scale,
):
    """
    simulates a single data set with a given specification using the ``simulate``
    function of ruspy.

    Parameters
    ----------
    seed : int
        seed for the simulation function.
    disc_fac : float
        the discount factor in the Rust Model.
    num_buses : int
        the amount of buses that should be simulated.
    num_periods : int
        The number of periods that should be simulated for each bus.
    num_states : int
        the number of states for the which the mileage state is discretized.
    cost_params : np.array
        the cost parameters for which the data is simulated.
    trans_params : np.array
        the cost parameters for which the data is simulated..
    cost_func : callable
        the cost function that underlies the data generating process.
    scale : float
        the scale of the cost function.

    Returns
    -------
    df : pd.DataFrame
        Simulated data set for the given data generating process.

    """
    init_dict = {
        "simulation": {
            "discount_factor": disc_fac,
            "periods": num_periods,
            "seed": seed,
            "buses": num_buses,
        },
    }

    costs = calc_obs_costs(num_states, cost_func, cost_params, scale)
    trans_mat = create_transition_matrix(num_states, trans_params)
    ev = calc_fixp(trans_mat, costs, disc_fac)[0]
    df = simulate(init_dict["simulation"], ev, costs, trans_mat)

    return df
Ejemplo n.º 5
0
def inputs_sim(inputs):
    out = {}
    out["init_dict"] = init_dict = random_init(inputs)["simulation"]

    # Draw parameter
    param1 = np.random.normal(10.0, 2)
    param2 = np.random.normal(2.3, 0.5)
    params = np.array([param1, param2])

    disc_fac = init_dict["discount_factor"]
    probs = np.array(init_dict["known_trans"])
    num_states = 300

    out["trans_mat"] = trans_mat = create_transition_matrix(num_states, probs)
    out["costs"] = costs = calc_obs_costs(num_states, lin_cost, params, 0.001)
    out["ev"] = ev = calc_fixp(trans_mat, costs, disc_fac)[0]
    out["df"] = simulate(
        init_dict,
        ev,
        costs,
        trans_mat,
    )
    return out
Ejemplo n.º 6
0
def test_fixp(inputs, outputs):
    assert_array_almost_equal(
        calc_fixp(outputs["trans_mat"], outputs["costs"],
                  inputs["disc_fac"])[0],
        outputs["fixp"],
    )
Ejemplo n.º 7
0
def estimate_mpec_ipopt(
    disc_fac,
    num_states,
    maint_func,
    maint_func_dev,
    num_params,
    scale,
    decision_mat,
    trans_mat,
    state_mat,
    optimizer_options,
    transition_results,
):
    """
    Estimation function of Mathematical Programming with Equilibrium Constraints
    (MPEC) in ruspy.


    Parameters
    ----------
    disc_fac : numpy.float
        see :ref:`disc_fac`
    num_states : int
        The size of the state space.
    maint_func: func
        see :ref: `maint_func`
    maint_func_dev: func
        see :ref: `maint_func_dev`
    num_params : int
        The number of parameters to be estimated.
    scale : numpy.float
        see :ref:`scale`
    decision_mat : numpy.array
        see :ref:`decision_mat`
    trans_mat : numpy.array
        see :ref:`trans_mat`
    state_mat : numpy.array
        see :ref:`state_mat`
    optimizer_options : dict
        The options chosen for the optimization algorithm in the initialization
        dictionairy.
    transition_results : dict
        The results from ``estimate_transitions``.

    Returns
    -------
    transition_results : dictionary
        see :ref:`result_trans`
    mpec_cost_parameters : dictionary
        see :ref:`result_costs`


    """

    if not optional_package_is_available:
        raise NotImplementedError(
            """To use this you need to install cyipopt. If you are mac or Linux user
            the command is $ conda install -c conda-forge cyipopt. If you use
            Windows you have to install from source. A description can be found
            here: https://github.com/matthias-k/cyipopt""")

    del optimizer_options["algorithm"]
    gradient = optimizer_options.pop("derivative")
    params = optimizer_options.pop("params")
    lower_bounds = optimizer_options.pop("set_lower_bounds")
    upper_bounds = optimizer_options.pop("set_upper_bounds")
    bounds = np.vstack((lower_bounds, upper_bounds)).T
    bounds = list(map(tuple, bounds))
    if "get_expected_values" in optimizer_options:
        get_expected_values = optimizer_options.pop("get_expected_values")
    else:
        get_expected_values = "No"

    n_evaluations, neg_criterion = wrap_ipopt_likelihood(
        mpec_loglike_cost_params,
        args=(
            maint_func,
            maint_func_dev,
            num_states,
            num_params,
            state_mat,
            decision_mat,
            disc_fac,
            scale,
        ),
    )

    constraint_func = wrap_ipopt_constraint(
        mpec_constraint,
        args=(
            maint_func,
            maint_func_dev,
            num_states,
            num_params,
            trans_mat,
            disc_fac,
            scale,
        ),
    )

    if gradient == "No":

        def approx_gradient(params):
            fun = approx_derivative(neg_criterion, params, method="2-point")
            return fun

        gradient_func = approx_gradient

        def approx_jacobian(params):
            fun = approx_derivative(constraint_func, params, method="2-point")
            return fun

        jacobian_func = approx_jacobian
    else:
        gradient_func = partial(
            mpec_loglike_cost_params_derivative,
            maint_func,
            maint_func_dev,
            num_states,
            num_params,
            disc_fac,
            scale,
            decision_mat,
            state_mat,
        )
        jacobian_func = partial(
            mpec_constraint_derivative,
            maint_func,
            maint_func_dev,
            num_states,
            num_params,
            disc_fac,
            scale,
            trans_mat,
        )

    constraints = {
        "type": "eq",
        "fun": constraint_func,
        "jac": jacobian_func,
    }

    tic = time.perf_counter()
    if get_expected_values == "Yes":
        obs_costs = calc_obs_costs(num_states, maint_func, params, scale)
        ev = calc_fixp(trans_mat, obs_costs, disc_fac)[0]
        params = np.concatenate((ev, params))
    results_ipopt = minimize_ipopt(
        neg_criterion,
        params,
        bounds=bounds,
        jac=gradient_func,
        constraints=constraints,
        **optimizer_options,
    )
    toc = time.perf_counter()
    timing = toc - tic

    mpec_cost_parameters = {}
    mpec_cost_parameters["x"] = results_ipopt["x"]
    mpec_cost_parameters["fun"] = results_ipopt["fun"]
    if results_ipopt["success"] is True:
        mpec_cost_parameters["status"] = True
    else:
        mpec_cost_parameters["status"] = False
    mpec_cost_parameters["n_iterations"] = results_ipopt["nit"]
    mpec_cost_parameters["n_evaluations"] = results_ipopt["nfev"]
    mpec_cost_parameters["time"] = timing
    mpec_cost_parameters["n_evaluations_total"] = n_evaluations[0]

    return transition_results, mpec_cost_parameters
Ejemplo n.º 8
0
def estimate_mpec_nlopt(
    disc_fac,
    num_states,
    maint_func,
    maint_func_dev,
    num_params,
    scale,
    decision_mat,
    trans_mat,
    state_mat,
    optimizer_options,
    transition_results,
):
    """
    Estimation function of Mathematical Programming with Equilibrium Constraints
    (MPEC) in ruspy.


    Parameters
    ----------
    disc_fac : numpy.float
        see :ref:`disc_fac`
    num_states : int
        The size of the state space.
    maint_func: func
        see :ref: `maint_func`
    maint_func_dev: func
        see :ref: `maint_func_dev`
    num_params : int
        The number of parameters to be estimated.
    scale : numpy.float
        see :ref:`scale`
    decision_mat : numpy.array
        see :ref:`decision_mat`
    trans_mat : numpy.array
        see :ref:`trans_mat`
    state_mat : numpy.array
        see :ref:`state_mat`
    optimizer_options : dict
        The options chosen for the optimization algorithm in the initialization
        dictionairy.
    transition_results : dict
        The results from ``estimate_transitions``.

    Returns
    -------
    transition_results : dictionary
        see :ref:`result_trans`
    mpec_cost_parameters : dictionary
        see :ref:`result_costs`


    """

    gradient = optimizer_options.pop("derivative")

    # Calculate partial functions needed for nlopt
    n_evaluations, partial_loglike_mpec = wrap_mpec_loglike(args=(
        maint_func,
        maint_func_dev,
        num_states,
        num_params,
        state_mat,
        decision_mat,
        disc_fac,
        scale,
        gradient,
    ))

    partial_constr_mpec = partial(
        mpec_constraint,
        maint_func,
        maint_func_dev,
        num_states,
        num_params,
        trans_mat,
        disc_fac,
        scale,
        gradient,
    )

    # set up nlopt
    opt = nlopt.opt(eval("nlopt." + optimizer_options.pop("algorithm")),
                    num_states + num_params)
    opt.set_min_objective(partial_loglike_mpec)
    opt.add_equality_mconstraint(
        partial_constr_mpec,
        np.full(num_states, 1e-6),
    )

    # supply user choices
    params = optimizer_options.pop("params")
    if "get_expected_values" in optimizer_options:
        get_expected_values = optimizer_options.pop("get_expected_values")
    else:
        get_expected_values = "No"

    if "set_local_optimizer" in optimizer_options:
        sub = nlopt.opt(  # noqa: F841
            eval("nlopt." + optimizer_options.pop("set_local_optimizer")),
            num_states + num_params,
        )
        exec("opt.set_local_optimizer(sub)")
        for key, _value in optimizer_options.items():
            exec("sub." + key + "(_value)")

    for key, _value in optimizer_options.items():
        exec("opt." + key + "(_value)")

    # Solving nlopt
    tic = time.perf_counter()
    if get_expected_values == "Yes":
        obs_costs = calc_obs_costs(num_states, maint_func, params, scale)
        ev = calc_fixp(trans_mat, obs_costs, disc_fac)[0]
        params = np.concatenate((ev, params))
    result = opt.optimize(params)
    toc = time.perf_counter()
    timing = toc - tic

    mpec_cost_parameters = {}
    mpec_cost_parameters["x"] = result
    mpec_cost_parameters["fun"] = opt.last_optimum_value()
    if opt.last_optimize_result() > 0:
        mpec_cost_parameters["status"] = True
    else:
        mpec_cost_parameters["status"] = False
    mpec_cost_parameters["n_iterations"] = opt.get_numevals()
    mpec_cost_parameters["n_evaluations"] = n_evaluations[0]
    mpec_cost_parameters["reason"] = opt.last_optimize_result()
    mpec_cost_parameters["time"] = timing

    return transition_results, mpec_cost_parameters
Ejemplo n.º 9
0
def get_demand(init_dict, demand_dict, demand_params):
    """
    Calculates the implied demand for a range of replacement costs
    for a certain number of buses over a certain time period.

    Parameters
    ----------
    init_dict : dict
        see :ref:`init_dict`.
    demand_dict : dict
        see :ref:`demand_dict`.
    demand_params : np.array
        see :ref:`demand_params`

    Returns
    -------
    demand_results : pd.DataFrame
        see :ref:`demand_results`

    """
    params = demand_params.copy()
    (
        disc_fac,
        num_states,
        maint_func,
        maint_func_dev,
        num_params,
        scale,
    ) = select_model_parameters(init_dict)

    # Initialize the loop over the replacement costs
    rc_range = np.linspace(
        demand_dict["RC_lower_bound"],
        demand_dict["RC_upper_bound"],
        demand_dict["demand_evaluations"],
    )
    demand_results = pd.DataFrame(index=rc_range, columns=["demand", "success"])
    demand_results.index.name = "RC"

    for rc in rc_range:
        params[-num_params] = rc
        demand_results.loc[(rc), "success"] = "No"

        # solve the model for the given paramaters
        trans_mat = create_transition_matrix(num_states, params[:-num_params])

        obs_costs = calc_obs_costs(num_states, maint_func, params[-num_params:], scale)
        ev = calc_fixp(trans_mat, obs_costs, disc_fac)[0]
        p_choice = choice_prob_gumbel(ev, obs_costs, disc_fac)

        # calculate initial guess for pi and run contraction iterations
        pi_new = np.full((num_states, 2), 1 / (2 * num_states))
        tol = 1
        iteration = 1
        while tol >= demand_dict["tolerance"]:
            pi = pi_new
            pi_new = p_choice * (
                np.dot(trans_mat.T, pi[:, 0])
                + np.dot(np.tile(trans_mat[0, :], (num_states, 1)).T, pi[:, 1])
            ).reshape((num_states, 1))
            tol = np.max(np.abs(pi_new - pi))
            iteration = +1
            if iteration > 200:
                break
            if tol < demand_dict["tolerance"]:
                demand_results.loc[(rc), "success"] = "Yes"

        demand_results.loc[(rc), "demand"] = (
            demand_dict["num_buses"] * demand_dict["num_periods"] * pi_new[:, 1].sum()
        )

    return demand_results