def plot_with_lines(year=None,target=None):

    fig = plt.figure(figsize=(10,5))

    gs = gsp.GridSpec(1, 2,
                      width_ratios=[2,1]
                      )

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])

    wprof = parse_data.windprof(year)
    wp = np.squeeze(pandas2stack(wprof.dframe[target]))
    wp_ma = ma.masked_where(np.isnan(wp),wp)
    X,Y=wprof.time,wprof.hgt
    ax1.pcolormesh(X,Y,wp_ma,vmin=0,vmax=360)
    ax1.xaxis.set_major_locator(mdates.MonthLocator())
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%b\n%Y'))
    ax1.set_xlabel(r'$ Time \rightarrow$')
    ax1.set_ylabel('height gate')

    for prof in range(wp.shape[1]):
        x = wp[:,prof]
        y = range(wp.shape[0])
        ax2.plot(x,y,color='r',alpha=0.05)
        # ax2.scatter(x,y,color='r',alpha=0.05)
    ax2.set_yticklabels('')
    ax2.set_xlabel(target)

    ax1.set_title('BBY Windprof wdir')
    plt.tight_layout()
    plt.show(block=False)
def plot_with_lines(year=None, target=None):

    fig = plt.figure(figsize=(10, 5))

    gs = gsp.GridSpec(1, 2, width_ratios=[2, 1])

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])

    wprof = parse_data.windprof(year)
    wp = np.squeeze(pandas2stack(wprof.dframe[target]))
    wp_ma = ma.masked_where(np.isnan(wp), wp)
    X, Y = wprof.time, wprof.hgt
    ax1.pcolormesh(X, Y, wp_ma, vmin=0, vmax=360)
    ax1.xaxis.set_major_locator(mdates.MonthLocator())
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%b\n%Y'))
    ax1.set_xlabel(r'$ Time \rightarrow$')
    ax1.set_ylabel('height gate')

    for prof in range(wp.shape[1]):
        x = wp[:, prof]
        y = range(wp.shape[0])
        ax2.plot(x, y, color='r', alpha=0.05)
        # ax2.scatter(x,y,color='r',alpha=0.05)
    ax2.set_yticklabels('')
    ax2.set_xlabel(target)

    ax1.set_title('BBY Windprof wdir')
    plt.tight_layout()
    plt.show(block=False)
        czd = czd.dframe.loc[first:last]
        bby = bby.dframe.loc[first:last]
        
        ''' select rainy days '''
        rain_czd = czd.precip > 0
        rain_dates = rain_czd.loc[rain_czd.values].index
#        rain_dates = None
            
        if rain_dates is None:
            wd = pd.DataFrame(index=wspd.index,columns=range(16))
            ws = pd.DataFrame(index=wspd.index,columns=range(16))
            
            wd.iloc[:,0] = bby.wdir
            ws.iloc[:,0] = bby.wspd
            
            wdir = pandas2stack(wdir).T
            wspd = pandas2stack(wspd).T
            wd.iloc[:,1:]=np.squeeze(wdir[:,:15])
            ws.iloc[:,1:]=np.squeeze(wspd[:,:15])
            
        else:
            
            wd = pd.DataFrame(index=wspd.loc[rain_dates].index,
                              columns=range(16))
            ws = pd.DataFrame(index=wspd.loc[rain_dates].index,
                              columns=range(16))
            
            wd.iloc[:,0] = bby.wdir.loc[rain_dates]
            ws.iloc[:,0] = bby.wspd.loc[rain_dates]
            
            wdir = pandas2stack(wdir.loc[rain_dates]).T
Ejemplo n.º 4
0
def process(year=[],wdsurf=None,
               wdwpro=None,rainbb=None,
               raincz=None, nhours=None):
        
        
        binss={'wdir':np.arange(0,370,10),
               'wspd':np.arange(0,36,1)}
        target = ['wdir','wspd']
        arrays = {}
        for t in target:
        
            first = True        
            for y in year:
                print('Processing year {}'.format(y))
                
                ' tta analysis '
                tta = tta_analysis(y)
                tta.start_df(wdir_surf=wdsurf,
                               wdir_wprof=wdwpro,
                               rain_bby=rainbb,
                               rain_czd=raincz,
                               nhours=nhours)
        
                ' retrieve dates '
                include_dates = tta.include_dates
                tta_dates = tta.tta_dates
                notta_dates = tta.notta_dates
        
                ' read wprof '
                wprof_df = parse_data.windprof(y)
            
                wprof = wprof_df.dframe[t]        
        
                ' wprof partition '
                wprof = wprof.loc[include_dates]    # all included
                wprof_tta = wprof.loc[tta_dates]    # only tta
                wprof_notta = wprof.loc[notta_dates]# only notta
                
                s1 = np.squeeze(pandas2stack(wprof))
                s2 = np.squeeze(pandas2stack(wprof_tta))
                s3 = np.squeeze(pandas2stack(wprof_notta))
        
                if first:
                    wp = s1
                    wp_tta = s2
                    wp_notta = s3
                    first = False
                else:
                    wp = np.hstack((wp,s1))
                    wp_tta = np.hstack((wp_tta,s2))
                    wp_notta = np.hstack((wp_notta, s3))
    
            _,wp_hours = wp.shape
            _,tta_hours = wp_tta.shape
            _,notta_hours = wp_notta.shape    
            
            arrays[t]=[wp,wp_tta,wp_notta]

    
        ' makes CFAD '
        hist_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        hist_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        cfad_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        cfad_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        
        average_spd = np.empty((40,3))
        average_dir = np.empty((40,3))
        median_spd = np.empty((40,3))
        median_dir = np.empty((40,3))
        
        for k,v in arrays.iteritems():        
        
            hist_array = np.empty((40,len(binss[k])-1,3))
            cfad_array = np.empty((40,len(binss[k])-1,3))
            average = np.empty((40,3))
            median = np.empty((40,3))
            wp = v[0]
            wp_tta = v[1]
            wp_notta = v[2]
        
            for hgt in range(wp.shape[0]):
                
                row1 = wp[hgt,:]
                row2 = wp_tta[hgt,:]
                row3 = wp_notta[hgt,:]
        
                for n,r in enumerate([row1,row2,row3]):
        
                    ' following CFAD Yuter et al (1995) '
                    freq,bins=np.histogram(r[~np.isnan(r)],
                                            bins=binss[k])
                    hist_array[hgt,:,n] = freq
                    cfad_array[hgt,:,n] = 100.*(freq/float(freq.sum()))
        
                    bin_middle = (bins[1:]+bins[:-1])/2.
                    average[hgt,n] = np.sum(freq*bin_middle)/freq.sum()
                    median[hgt,n] = np.percentile(r[~np.isnan(r)],50)
            
            if k == 'wspd':
                hist_array_spd = hist_array
                cfad_array_spd = cfad_array
                average_spd = average
                median_spd = median
            else:                
                hist_array_dir = hist_array
                cfad_array_dir = cfad_array
                average_dir = average
                median_dir = median
    
        return [hist_array_spd,
                hist_array_dir,
                cfad_array_spd,
                cfad_array_dir,
                binss['wspd'],
                binss['wdir'],
                wprof_df.hgt,
                wp_hours,
                tta_hours,
                notta_hours,
                average_spd,
                average_dir,
                median_spd,
                median_dir]
        
Ejemplo n.º 5
0
def processv2(year=[],wdsurf=None,
               wdwpro=None,rainbb=None,
               raincz=None, nhours=None):
        
        ''' v2: target loop moved into year loop '''
        
        
        binss={'wdir': np.arange(0,370,10),
               'wspd': np.arange(0,36,1),
               'u': np.arange(-15,21,1),
               'v': np.arange(-14,21,1),
               }
               
        target = ['wdir','wspd']
        arrays = {}
        wsp = np.empty((40,1))
        wsp_tta = np.empty((40,1))
        wsp_notta = np.empty((40,1))
        wdr = np.empty((40,1))
        wdr_tta = np.empty((40,1))
        wdr_notta = np.empty((40,1))
        
        for y in year:
            print('Processing year {}'.format(y))
            
            ' tta analysis '
            tta = tta_analysis(y)
            tta.start_df(wdir_surf  = wdsurf,
                         wdir_wprof = wdwpro,
                         rain_bby   = rainbb,
                         rain_czd   = raincz,
                         nhours     = nhours)
    
            ' retrieve dates '
            include_dates = tta.include_dates
            tta_dates     = tta.tta_dates
            notta_dates   = tta.notta_dates
    
            ' read wprof '
            wprof_df = parse_data.windprof(y)
            
            for n,t in enumerate(target):
                
                wprof = wprof_df.dframe[t]        
        
                ' wprof partition '
                wprof = wprof.loc[include_dates]    # all included
                wprof_tta = wprof.loc[tta_dates]    # only tta
                wprof_notta = wprof.loc[notta_dates]# only notta
                
                s1 = np.squeeze(pandas2stack(wprof))
                if wprof_tta.size > 0:
                    s2 = np.squeeze(pandas2stack(wprof_tta))
                    ttaok = True
                else:
                    ttaok =False
                s3 = np.squeeze(pandas2stack(wprof_notta))
        
                if t == 'wdir':
                    wdr = np.hstack((wdr,s1))
                    if ttaok is True:
                        if s2.ndim == 1:
                            s2=np.expand_dims(s2,axis=1)
                        wdr_tta = np.hstack((wdr_tta,s2))
                    wdr_notta = np.hstack((wdr_notta, s3))                    
                else:
                    wsp = np.hstack((wsp,s1))
                    if ttaok is True:
                        if s2.ndim == 1:
                            s2=np.expand_dims(s2,axis=1)                        
                        wsp_tta = np.hstack((wsp_tta,s2))
                    wsp_notta = np.hstack((wsp_notta, s3))

        arrays['wdir']=[wdr,wdr_tta,wdr_notta]
        arrays['wspd']=[wsp,wsp_tta,wsp_notta]
                
        uw = -wsp*np.sin(np.radians(wdr))
        uw_tta = -wsp_tta*np.sin(np.radians(wdr_tta))
        uw_notta = -wsp_notta*np.sin(np.radians(wdr_notta))

        vw = -wsp*np.cos(np.radians(wdr))
        vw_tta = -wsp_tta*np.cos(np.radians(wdr_tta))
        vw_notta = -wsp_notta*np.cos(np.radians(wdr_notta))        

        arrays['u']=[uw,uw_tta,uw_notta]
        arrays['v']=[vw,vw_tta,vw_notta]

        ''' total hours, first rows are empty '''                
        _,wp_hours = wsp.shape
        _,tta_hours = wsp_tta.shape
        _,notta_hours = wsp_notta.shape    
        wp_hours -= 1
        tta_hours-= 1
        notta_hours -= 1
        
        ' initialize arrays '
        hist_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        hist_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        cfad_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        cfad_array_dir = np.empty((40,len(binss['wdir'])-1,3))        
        average_spd = np.empty((40,3))
        average_dir = np.empty((40,3))
        median_spd = np.empty((40,3))
        median_dir = np.empty((40,3))
        
        ' loop for variable (wdir,wspd) '
        for k,v in arrays.iteritems():        
        
            hist_array = np.empty((40,len(binss[k])-1,3))
            cfad_array = np.empty((40,len(binss[k])-1,3))
            average = np.empty((40,3))
            median = np.empty((40,3))
            
            ' extract value'
            wp = v[0]
            wp_tta = v[1]
            wp_notta = v[2]
        
            ' makes CFAD '
            for hgt in range(wp.shape[0]):
                
                row1 = wp[hgt,:]
                row2 = wp_tta[hgt,:]
                row3 = wp_notta[hgt,:]
        
                for n,r in enumerate([row1,row2,row3]):
        
                    ' following CFAD Yuter et al (1995) '
                    freq,bins=np.histogram(r[~np.isnan(r)],
                                            bins=binss[k])
                    hist_array[hgt,:,n] = freq
                    cfad_array[hgt,:,n] = 100.*(freq/float(freq.sum()))
        
                    bin_middle = (bins[1:]+bins[:-1])/2.
                    average[hgt,n] = np.sum(freq*bin_middle)/freq.sum()
                    median[hgt,n] = np.percentile(r[~np.isnan(r)],50)
            
            if k == 'wspd':
                hist_array_spd = hist_array
                cfad_array_spd = cfad_array
                average_spd = average
                median_spd = median
            elif k == 'wdir':                
                hist_array_dir = hist_array
                cfad_array_dir = cfad_array
                average_dir = average
                median_dir = median
            elif k == 'u':
                hist_array_u = hist_array
                cfad_array_u = cfad_array
                average_u = average
                median_u = median                
            elif k == 'v':
                hist_array_v = hist_array
                cfad_array_v = cfad_array
                average_v = average
                median_v = median
    
        return [hist_array_spd,
                hist_array_dir,
                hist_array_u,
                hist_array_v,
                cfad_array_spd,
                cfad_array_dir,
                cfad_array_u,
                cfad_array_v,
                binss['wspd'],
                binss['wdir'],
                binss['u'],
                binss['v'],
                wprof_df.hgt,
                wp_hours,
                tta_hours,
                notta_hours,
                average_spd,
                average_dir,
                average_u,
                average_v,
                median_spd,
                median_dir,
                median_u,
                median_v,
                ]
Ejemplo n.º 6
0
        wdir = wpr.dframe.loc[first:last].wdir
        czd = czd.dframe.loc[first:last]
        bby = bby.dframe.loc[first:last]
        ''' select rainy days '''
        rain_czd = czd.precip > 0
        rain_dates = rain_czd.loc[rain_czd.values].index
        #        rain_dates = None

        if rain_dates is None:
            wd = pd.DataFrame(index=wspd.index, columns=range(16))
            ws = pd.DataFrame(index=wspd.index, columns=range(16))

            wd.iloc[:, 0] = bby.wdir
            ws.iloc[:, 0] = bby.wspd

            wdir = pandas2stack(wdir).T
            wspd = pandas2stack(wspd).T
            wd.iloc[:, 1:] = np.squeeze(wdir[:, :15])
            ws.iloc[:, 1:] = np.squeeze(wspd[:, :15])

        else:

            wd = pd.DataFrame(index=wspd.loc[rain_dates].index,
                              columns=range(16))
            ws = pd.DataFrame(index=wspd.loc[rain_dates].index,
                              columns=range(16))

            wd.iloc[:, 0] = bby.wdir.loc[rain_dates]
            ws.iloc[:, 0] = bby.wspd.loc[rain_dates]

            wdir = pandas2stack(wdir.loc[rain_dates]).T
def plot_with_hist(year=None,target=None,normalized=True,
                    pngsuffix=None):

    name={'wdir':'Wind Direction',
          'wspd':'Wind Speed'}

    if target == 'wdir':
        vmin,vmax = [0,360]
        bins = np.arange(0,370,10)
        hist_xticks = np.arange(0,400,40)
        hist_xlim = [0,360]
    elif target == 'wspd':
        vmin,vmax = [0,30]
        bins = np.arange(0,36,1)
        hist_xticks = np.arange(0,40,5)
        hist_xlim = [0,35]

    fig = plt.figure(figsize=(20,5))

    gs = gsp.GridSpec(1, 2,
                      width_ratios=[3,1]
                      )

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])

    wprof = parse_data.windprof(year)
    wp = np.squeeze(pandas2stack(wprof.dframe[target]))
    wp_ma = ma.masked_where(np.isnan(wp),wp)
    X,Y = wprof.time,wprof.hgt
    p = ax1.pcolormesh(X,Y,wp_ma,vmin=vmin,vmax=vmax)
    add_colorbar(ax1,p)
    ax1.xaxis.set_major_locator(mdates.MonthLocator())
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%b\n%Y'))
    ax1.set_xlabel(r'$ Time \rightarrow$')
    ax1.set_ylabel('Altitude [m] MSL')
    ax1.set_title('BBY Windprof '+name[target])

    array = np.empty((40,len(bins)-1))
    for hgt in range(wp.shape[0]):
        row = wp[hgt,:]
        freq,bins=np.histogram(row[~np.isnan(row)],
                                bins=bins,
                                density=normalized)
        array[hgt,:]=freq

    x = bins
    y = wprof.hgt
    p = ax2.pcolormesh(x,y,array,cmap='viridis')
    amin = np.amin(array)
    amax = np.amax(array)
    cbar = add_colorbar(ax2,p,size='4%',ticks=[amin,amax])
    cbar.ax.set_yticklabels(['low','high'])
    ax2.set_xticks(hist_xticks)
    ax2.set_yticklabels('')
    ax2.set_xlabel(name[target])
    ax2.set_xlim(hist_xlim)
    ax2.set_title('Normalized frequency')

    plt.tight_layout()
    if pngsuffix:
        out_name = 'wprof_{}_{}.png'
        plt.savefig(out_name.format(target,pngsuffix))
    else:
        plt.show(block=False)
def plot_with_hist(year=None, target=None, normalized=True, pngsuffix=None):

    name = {'wdir': 'Wind Direction', 'wspd': 'Wind Speed'}

    if target == 'wdir':
        vmin, vmax = [0, 360]
        bins = np.arange(0, 370, 10)
        hist_xticks = np.arange(0, 400, 40)
        hist_xlim = [0, 360]
    elif target == 'wspd':
        vmin, vmax = [0, 30]
        bins = np.arange(0, 36, 1)
        hist_xticks = np.arange(0, 40, 5)
        hist_xlim = [0, 35]

    fig = plt.figure(figsize=(20, 5))

    gs = gsp.GridSpec(1, 2, width_ratios=[3, 1])

    ax1 = plt.subplot(gs[0])
    ax2 = plt.subplot(gs[1])

    wprof = parse_data.windprof(year)
    wp = np.squeeze(pandas2stack(wprof.dframe[target]))
    wp_ma = ma.masked_where(np.isnan(wp), wp)
    X, Y = wprof.time, wprof.hgt
    p = ax1.pcolormesh(X, Y, wp_ma, vmin=vmin, vmax=vmax)
    add_colorbar(ax1, p)
    ax1.xaxis.set_major_locator(mdates.MonthLocator())
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%b\n%Y'))
    ax1.set_xlabel(r'$ Time \rightarrow$')
    ax1.set_ylabel('Altitude [m] MSL')
    ax1.set_title('BBY Windprof ' + name[target])

    array = np.empty((40, len(bins) - 1))
    for hgt in range(wp.shape[0]):
        row = wp[hgt, :]
        freq, bins = np.histogram(row[~np.isnan(row)],
                                  bins=bins,
                                  density=normalized)
        array[hgt, :] = freq

    x = bins
    y = wprof.hgt
    p = ax2.pcolormesh(x, y, array, cmap='viridis')
    amin = np.amin(array)
    amax = np.amax(array)
    cbar = add_colorbar(ax2, p, size='4%', ticks=[amin, amax])
    cbar.ax.set_yticklabels(['low', 'high'])
    ax2.set_xticks(hist_xticks)
    ax2.set_yticklabels('')
    ax2.set_xlabel(name[target])
    ax2.set_xlim(hist_xlim)
    ax2.set_title('Normalized frequency')

    plt.tight_layout()
    if pngsuffix:
        out_name = 'wprof_{}_{}.png'
        plt.savefig(out_name.format(target, pngsuffix))
    else:
        plt.show(block=False)
def plot(year=[],target=None,pngsuffix=False, normalized=True,
        contourf=True, pdfsuffix=False, wdsurf=None, wdwpro=None,
        rainbb=None, raincz=None, nhours=None):
    
    name={'wdir':'Wind Direction',
          'wspd':'Wind Speed'}

    if target == 'wdir':
        bins = np.arange(0,370,10)
        hist_xticks = np.arange(0,420,60)
        hist_xlim = [0,360]
    elif target == 'wspd':
        bins = np.arange(0,36,1)
        hist_xticks = np.arange(0,40,5)
        hist_xlim = [0,35]

    first = True        
    for y in year:
        print('Processing year {}'.format(y))

        ' tta analysis '
        tta = tta_analysis(y)
        tta.start_df(wdir_surf=wdsurf,
                       wdir_wprof=wdwpro,
                       rain_bby=rainbb,
                       rain_czd=raincz,
                       nhours=nhours)


        ' retrieve dates '
        include_dates = tta.include_dates
        tta_dates = tta.tta_dates
        notta_dates = tta.notta_dates

        ' read wprof '
        wprof_df = parse_data.windprof(y)
        wprof = wprof_df.dframe[target]        

        ' wprof partition '
        wprof = wprof.loc[include_dates]    # all included
        wprof_tta = wprof.loc[tta_dates]    # only tta
        wprof_notta = wprof.loc[notta_dates]# only notta
        
        s1 = np.squeeze(pandas2stack(wprof))
        s2 = np.squeeze(pandas2stack(wprof_tta))
        s3 = np.squeeze(pandas2stack(wprof_notta))

        if first:
            wp = s1
            wp_tta = s2
            wp_notta = s3
            first = False
        else:
            wp = np.hstack((wp,s1))
            wp_tta = np.hstack((wp_tta,s2))
            wp_notta = np.hstack((wp_notta, s3))

    _,wp_hours = wp.shape
    _,tta_hours = wp_tta.shape
    _,notta_hours = wp_notta.shape

    ' makes CFAD '
    hist_array = np.empty((40,len(bins)-1,3))
    for hgt in range(wp.shape[0]):
        
        row1 = wp[hgt,:]
        row2 = wp_tta[hgt,:]
        row3 = wp_notta[hgt,:]

        for n,r in enumerate([row1,row2,row3]):

            ' following CFAD Yuter et al (1995) '
            freq,bins=np.histogram(r[~np.isnan(r)],
                                    bins=bins)
            if normalized:
                hist_array[hgt,:,n] = 100.*(freq/float(freq.sum()))
            else:
                hist_array[hgt,:,n] = freq


    fig,axs = plt.subplots(1,3,sharey=True,figsize=(10,8))

    ax1 = axs[0]
    ax2 = axs[1]
    ax3 = axs[2]

    hist_wp = np.squeeze(hist_array[:,:,0])
    hist_wptta = np.squeeze(hist_array[:,:,1])
    hist_wpnotta = np.squeeze(hist_array[:,:,2])

    x = bins
    y = wprof_df.hgt

    if contourf:
        X,Y = np.meshgrid(x,y)
        nancol = np.zeros((40,1))+np.nan
        hist_wp = np.hstack((hist_wp,nancol))
        hist_wptta = np.hstack((hist_wptta,nancol))
        hist_wpnotta = np.hstack((hist_wpnotta,nancol))

        vmax=20
        nlevels = 10
        delta = int(vmax/nlevels)
        v = np.arange(2,vmax+delta,delta)

        cmap = cm.get_cmap('plasma')

        ax1.contourf(X,Y,hist_wp,v,cmap=cmap)
        p = ax2.contourf(X,Y,hist_wptta,v,cmap=cmap,extend='max')
        p.cmap.set_over(cmap(1.0))
        ax3.contourf(X,Y,hist_wpnotta,v,cmap=cmap)
        cbar = add_colorbar(ax3,p,size='4%')
    else:
        p = ax1.pcolormesh(x,y,hist_wp,cmap='viridis')
        ax2.pcolormesh(x,y,hist_wptta,cmap='viridis')
        ax3.pcolormesh(x,y,hist_wpnotta,cmap='viridis')
        amin = np.amin(hist_wpnotta)
        amax = np.amax(hist_wpnotta)
        cbar = add_colorbar(ax3,p,size='4%',ticks=[amin,amax])
        cbar.ax.set_yticklabels(['low','high'])


    ' --- setup ax1 --- '
    amin = np.amin(hist_wp)
    amax = np.amax(hist_wp)
    ax1.set_xticks(hist_xticks)
    ax1.set_xlim(hist_xlim)
    ax1.set_ylim([0,4000])
    txt = 'All profiles (n={})'.format(wp_hours)
    ax1.text(0.5,0.95,txt,fontsize=15,
            transform=ax1.transAxes,va='bottom',ha='center')
    ax1.set_ylabel('Altitude [m] MSL')

    ' --- setup ax2 --- '
    amin = np.amin(hist_wptta)
    amax = np.amax(hist_wptta)
    ax2.set_xticks(hist_xticks)
    ax2.set_xlim(hist_xlim)
    ax2.set_ylim([0,4000])
    ax2.set_xlabel(name[target])
    txt = 'TTA (n={})'.format(tta_hours)
    ax2.text(0.5,0.95,txt,fontsize=15,
            transform=ax2.transAxes,va='bottom',ha='center')

    ' --- setup ax3 --- '
    ax3.set_xticks(hist_xticks)
    ax3.set_xlim(hist_xlim)
    ax3.set_ylim([0,4000])
    txt = 'NO-TTA (n={})'.format(notta_hours)
    ax3.text(0.5,0.95,txt,fontsize=15,
            transform=ax3.transAxes,va='bottom',ha='center')


    title = 'Normalized frequencies of BBY wind profiles {} \n'
    title += 'TTA wdir_surf:{}, wdir_wp:{}, '
    title += 'rain_bby:{}, rain_czd:{}, nhours:{}'
    
    if len(year) == 1:
        yy = 'year {}'.format(year[0])
    else:
        yy = 'year {} to {}'.format(year[0],year[-1])
    plt.suptitle(title.format(yy, wdsurf, wdwpro, rainbb, raincz, nhours),
                fontsize=15)

    plt.subplots_adjust(top=0.9,left=0.1,right=0.95,bottom=0.1, wspace=0.1)
     
    if pngsuffix:
        out_name = 'wprof_{}_cfad{}.png'
        plt.savefig(out_name.format(target,pngsuffix))
        plt.close()
    elif pdfsuffix:
        out_name = 'wprof_{}_cfad{}.pdf'
        plt.savefig(out_name.format(target,pdfsuffix))
        plt.close()        
    else:
        plt.show()
Ejemplo n.º 10
0
target='wdir'

for n, y in enumerate([0, 1998] + range(2001, 2013)):
    if n == 0:
        ax[n].axis('off')
    else:
        print y
        if n != 1:
            ax[n].set_yticklabels('')
        if n == 12:
            ax[n].set_xlabel(r'$ Time \rightarrow$')
        
        # parse windprof dataframe with wspd and wdir
        wprof = parse_data.windprof(y)
        wp = np.squeeze(pandas2stack(wprof.dframe[target]))

        # plot array
        # ax[n].imshow(wp, aspect='auto', origin='lower',
        #              interpolation='none')

        X,Y = wprof.time,wprof.hgt
        wp_ma = ma.masked_where(np.isnan(wp),wp)
        ax[n].pcolormesh(X,Y,wp_ma)
        ax[n].xaxis.set_major_locator(mdates.MonthLocator())
        ax[n].xaxis.set_major_formatter(mdates.DateFormatter('%b'))
        txt = 'Season: {}/{}'
        ax[n].text(0.05, 0.8, txt.format(str(y-1),str(y)),
                    weight='bold', transform=ax[n].transAxes)

fig.suptitle('BBY Windprof '+target)