'directed': True, 'prune_limit': np.inf, 'triangle_limit': np.inf, 'other_limit': np.inf}) toygraphs=rw.Toygraphs({ 'numgraphs': 1, 'graphtype': "steyvers", 'numnodes': 280, 'numlinks': 6, 'prob_rewire': .3}) irts=rw.Irts({ 'data': [], 'irttype': "exgauss", 'lambda': 0.721386887, 'sigma': 6.58655566, 'irt_weight': 0.95, 'rcutoff': 20}) # USF prior #usfnet, usfitems = rw.read_csv('./snet/USF_animal_subset.snet') #priordict = rw.genGraphPrior([usfnet], [usfitems]) for subj in subs: print subj category="animals" Xs, items, irts.data, numnodes=rw.readX(subj,category,'./Spring2015/results_cleaned.csv',ignorePerseverations=True) # uinvite prior priorgraphs=[]
'numlinks': 6, 'prob_rewire': .3 }) toydata = rw.Toydata({ 'numx': range(5, 25), 'trim': .7, 'jump': 0.0, 'jumptype': "uniform", 'startX': "uniform" }) irts = rw.Irts({ 'data': [], 'irttype': "gamma", 'beta': (1 / 1.1), 'irt_weight': 0.9, 'rcutoff': 20 }) fitinfo = rw.Fitinfo({ 'tolerance': 1500, 'startGraph': "naiverw", 'prob_multi': 1.0, 'prob_overlap': 0.5 }) x_seed = 1 graph_seed = 1 td = toydata[0]