Ejemplo n.º 1
0
  def updateWithS3(self, data,
                   inputKeyName = 'input-data-name',
                   invocationType = InvocationType.event,
                   user= None, pw= None):
    # put users if not specified
    user = user or self.user; pw = pw or self.pw

    # extract function name and inputbucket name
    inputBucketName = self.functionNames.inputBucket()
    functionName = self.functionNames.updateS3()
    logging.info(f'bucket is {inputBucketName}')

    # save data to s3
    S3.save(key = inputKeyName,
            objectToSave = data ,
            bucket = inputBucketName,
            user=user, pw=pw)
    logging.info(f'data is saved to s3, invoking ingestion function')

    # call lambda function
    inputValue = Event(body = json.dumps({ 'key': inputKeyName })).to_dict()
    logging.info(f'input to lambda is {inputValue}')
    lambdaResponse = self.lambdaClient.invoke(
      functionName= functionName ,
      input=inputValue,
      invocationType= invocationType )
    logging.info(f'lambdaResponse is {lambdaResponse}')
    if invocationType == 'Event': return "successfully sent event, please watch your slack"
    if lambdaResponse: return self.returnLambdaResponse(lambdaResponse)
Ejemplo n.º 2
0
    def updateWithS3(self,
                     data,
                     inputKeyName='input-data-name',
                     invocationType='RequestResponse',
                     user=None,
                     pw=None):
        # put users if not specified
        user = user or self.user
        pw = pw or self.pw

        # extract function name and inputbucket name
        inputBucketName = self.functionNames.inputBucket()
        functionName = self.functionNames.updateS3()
        logging.info(f'bucket is {inputBucketName}')

        # save data to s3
        S3.save(key=inputKeyName,
                objectToSave=data,
                bucket=inputBucketName,
                user=user,
                pw=pw)
        logging.info(f'data is saved to s3, invoking ingestion function')

        # call lambda function
        lambdaPayload = {'key': inputKeyName}
        logging.info(f'input to lambda is {lambdaPayload}')
        return self.lambdaClient.invoke(functionName=functionName,
                                        input=lambdaPayload,
                                        invocationType=invocationType)
def lambdaDumpOnlineS3(event, *args):
    print(f'ecommece col list is {ECOMMERCE_COL_LIST}')
    # get all products from db
    df: pd.DataFrame = pd.DataFrame([i.data for i in ProductDatabase.scan()])
    # get online list from ECOMMERCE_COL_LIST
    onlineList: List[str] = yaml.load(requests.get(ECOMMERCE_COL_LIST).content)
    # filter df for item
    ## condition 1 master online is true
    condition1 = df['master_online'] == True
    ## condition 2 hema_name_en is not blank
    condition2 = df['hema_name_en'] != ''
    ## filtered df
    onlineDf: pd.DataFrame = df[condition1 & condition2].loc[:, onlineList]
    ### log shape and size
    print('shape is:', onlineDf.shape)
    print('size is:',
          sys.getsizeof(onlineDf.to_json(orient='split')) / 1e6, 'Mb')

    # save file as gzip
    key = 'onlineData'
    bucket = INVENTORY_BUCKET_NAME
    path = '/tmp/inventory.json'
    ## export to gzip
    onlineDf.to_json(path, orient='split', compression='gzip')
    ## upload file to s3
    S3.saveFile(key=key,
                path=path,
                bucket=bucket,
                ExtraArgs={
                    **ExtraArgs.gzip,
                    **ExtraArgs.publicRead
                })
    return Response.returnSuccess()
Ejemplo n.º 4
0
def loadRemoteCache(key='', bucket='', **kwargs):
    '''
  load cache of the dataframe from S3 bucket \n
  key: str: the name (key) of the dataframe to be loaded from the S3 bucket \n
  bucket: str: the name of the bucket to load the dataframe
  '''
    path = '/tmp/tmpPath'
    S3.loadFile(key, path=path, bucket=bucket, **kwargs)
    df = pd.read_feather(path)
    return df
Ejemplo n.º 5
0
def imageToS3(image: Image, bucket: str, key: str):
    '''
  saves the image inputted to the S3 bucket \n
  image: Image: the image that is going to be saved \n
  bucket: str: the name of the bucket where the image will be saved \n,
  key: str: the key of the image
  '''
    path = '/tmp/tmpImage'
    print(f'saving image to {bucket}/{key}')
    image.save(path, format='png')
    S3.saveFile(key, path, bucket)
    return True
Ejemplo n.º 6
0
def saveRemoteHash(data: pd.DataFrame, key='', bucket='', **kwargs):
    '''
  save hash of the dataframe to S3 bucket \n
  data:pd.DataFrame: dataframe to save \n
  key: str: the name (key) of the dataframe to be saved in the S3 bucket \n
  bucket: str: the name of the bucket to store the dataframe
  '''
    hashKey = f'{key}-hash'
    hashString = getDfHash(data)
    dictToSave = {'hash': hashString}
    print(f'hashKey is {hashKey}')
    print('saving hash to s3')
    S3.save(key=hashKey, objectToSave=dictToSave, bucket=bucket, **kwargs)
    print(f'saved hash {hashString}')
def updateS3Input(cls,
                  inputBucketName: str = INPUT_BUCKET_NAME,
                  key: str = '',
                  **kwargs):
    products = S3.load(key=key, bucket=inputBucketName, **kwargs)
    updateResult = cls.valueUpdate2({'items': cls.convertIntCols(products)})
    return updateResult
Ejemplo n.º 8
0
def imageFromS3(bucket: str, key: str, **kwargs):
    '''
  obtain the image url from the S3 bucket and returns it \n
  bucket: str: the name of the bucket containing the image \n
  key: str: the key of the image
  '''
    url = S3.presign(key, bucket=bucket, expiry=10, **kwargs)
    return imageFromUrl(url)
Ejemplo n.º 9
0
def saveRemoteCache(data: pd.DataFrame,
                    key='',
                    bucket='',
                    localCachePath='/tmp/cache',
                    localHashPath='/tmp/hash',
                    **kwargs):
    '''
  save cache and hash of the dataframe to both local location and S3 bucket \n
  data:pd.DataFrame: dataframe to save \n
  key: str: the name (key) of the dataframe to be saved in the S3 bucket \n
  bucket: str: the name of the bucket to store the dataframe \n
  localCachePath: str:path to save cache locally \n
  localHashPath: str: path to save hash locally
  '''
    saveLocalCache(data=data, path=localCachePath)
    saveLocalHash(data=data, path=localHashPath)
    saveRemoteHash(data=data, key=key, bucket=bucket)
    S3.saveFile(key=key, path=localCachePath, bucket=bucket, **kwargs)
Ejemplo n.º 10
0
def showImgS3(bucket: str, key: str):
    '''
  show the image obtained from the S3 bucket \n
  bucket: str: the name of the bucket containing the image \n
  key: str: the key of the image
  '''
    from matplotlib.pyplot import imshow
    import time
    imageFound = False
    while imageFound == False:
        if S3.exist(key, bucket=bucket):
            url = S3.presign(key, expiry='10', bucket=bucket)
            img = imageFromUrl(url)
            imshow(img)
            imageFound = True
        else:
            print('conversion failed or didnt happen')
            time.sleep(1)
Ejemplo n.º 11
0
def saveRemoteCache(cls ,db:pd.DataFrame, key= ALLDATAKEY,
                   bucket = INVENTORY_BUCKET_NAME, localCachePath=DBCACHELOCATION,
                   localHashPath=DBHASHLOCATION):
  if db.empty:
    db = pd.DataFrame([DUMMYDATA])
  db.columns = db.columns.astype(str)
  db = db.reset_index(drop=True)

#   print(db)
  pdUtils.saveRemoteCache(data=db, key= key,
                          bucket=bucket, localCachePath=localCachePath,
                          localHashPath=localHashPath)
  jsonDb = db.to_json(orient='split')
  zlibArc = zlib.compress(jsonDb.encode())
  tmpPath = '/tmp/zlibJsonCache.zl'
  with open(tmpPath, 'wb') as f:
    f.write(zlibArc)
  S3.saveFile(key=f'{key}-json.zl',path=tmpPath,bucket=bucket)
Ejemplo n.º 12
0
def loadRemoteHash(key='', bucket='', **kwargs):
    '''
  load hash of the dataframe from S3 bucket \n
  key: str: the name (key) of the dataframe to be loaded from the S3 bucket \n
  bucket: str: the name of the bucket to load the dataframe
  '''
    hashKey = f'{key}-hash'
    print(f'loading hashkey {hashKey}')
    loadedHash = S3.load(hashKey, bucket=bucket, **kwargs).get('hash')
    print(f'loaded hash is {loadedHash}')
    return loadedHash
Ejemplo n.º 13
0
def allQuery(cls, key = 'allData', bucket = os.environ.get('INVENTORY_BUCKET_NAME'), **kwargs):
  print(bucket)
  result = S3.presign(key, bucket = bucket, checkExist=False,  **kwargs)
  return result
Ejemplo n.º 14
0
ACCESSTOKEN = 'TQ393qRcgP5+onjGEJQmmuwxpvelLdBGh5+5hA8haI6Jmn2i+KXyDmg8vASWWNJh3Jl22x/w0tRx8E+LqespD7qQS5VZtmCL1OLbrlrp4YNllymiJhGuGaQgH1zy2UlNnWR5+zQ86fwRXc/x3zsX3gdB04t89/1O/w1cDnyilFU='

## crate chatbot object
bot = ChatBot('robot',
              storage_adapter='chatterbot.storage.SQLStorageAdapter',
              preprocessors=[
                  'chatterbot.preprocessors.clean_whitespace',
              ],
              database_uri='sqlite:////tmp/database.db',
              read_only=True)
## download chatbot file
key = 'chatterbotdb.db'
path = '/tmp/database.db'
bucket = 'chatterbot-data'
S3.loadFile(key=key, path=path, bucket=bucket)


def getReplyToken(body):
    return body["events"][0]['replyToken']


def sendReply(replyToken, accessToken):
    '''send line reply message'''
    line_bot_api = LineBotApi(accessToken)
    line_bot_api.reply_message(replyToken,
                               TextSendMessage(text='Hello World!'))


def chatterbotResponse(inputText):
    response = bot.get_response(inputText)