Ejemplo n.º 1
0
    def test_color_ramp(self):
        """Test for color_ramp function."""
        number_of_colours = 1
        expected_colors = ['#ff0000']
        colors = color_ramp(number_of_colours)
        self.assertEqual(colors, expected_colors)

        number_of_colours = 2
        expected_colors = ['#ff0000', '#00ffff']
        colors = color_ramp(number_of_colours)
        self.assertEqual(colors, expected_colors)
Ejemplo n.º 2
0
    def test_color_ramp(self):
        """Test for color_ramp function."""
        number_of_colours = 1
        expected_colors = ['#ff0000']
        colors = color_ramp(number_of_colours)
        self.assertEqual(colors, expected_colors)

        number_of_colours = 2
        expected_colors = ['#ff0000', '#00ffff']
        colors = color_ramp(number_of_colours)
        self.assertEqual(colors, expected_colors)
Ejemplo n.º 3
0
    def test_color_ramp(self):
        """Test for color_ramp function."""
        number_of_colours = 1
        expected_colors = ['#ff0000']
        colors = color_ramp(number_of_colours)
        message = 'Expecting %s, but it returns %s' % (expected_colors, colors)
        self.assertEqual(colors, expected_colors, message)

        number_of_colours = 2
        expected_colors = ['#ff0000', '#00ffff']
        colors = color_ramp(number_of_colours)
        message = 'Expecting %s, but it returns %s' % (expected_colors, colors)
        self.assertEqual(colors, expected_colors, message)
Ejemplo n.º 4
0
    def test_color_ramp(self):
        """Test for color_ramp function."""
        number_of_colours = 1
        expected_colors = ['#ff0000']
        colors = color_ramp(number_of_colours)
        message = 'Expecting %s, but it returns %s' % (expected_colors, colors)
        self.assertEqual(colors, expected_colors, message)

        number_of_colours = 2
        expected_colors = ['#ff0000', '#00ffff']
        colors = color_ramp(number_of_colours)
        message = 'Expecting %s, but it returns %s' % (expected_colors, colors)
        self.assertEqual(colors, expected_colors, message)
Ejemplo n.º 5
0
    def run(self, layers=None):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :param layers: List of layers expected to contain.
                * hazard_layer: Hazard layer
                * exposure_layer: Vector layer of structure data on
                the same grid as hazard_layer

        :returns: Map of building exposed to each hazard zones.
                  Table with number of buildings affected
        :rtype: dict
        """
        self.validate()
        self.prepare(layers)

        # Target Field
        target_field = 'zone'

        # Not affected string in the target field
        not_affected_value = 'Not Affected'

        # Parameters
        hazard_zone_attribute = self.parameters['hazard zone attribute']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Input checks
        if not hazard_layer.is_polygon_data:
            message = (
                'Input hazard must be a polygon. I got %s with '
                'layer type %s' %
                (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
            raise Exception(message)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute not in hazard_layer.get_attribute_names():
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (hazard_layer.get_name(), hazard_zone_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Find the target field name that has no conflict with default
        # target
        attribute_names = hazard_layer.get_attribute_names()
        target_field = get_non_conflicting_attribute_name(
            target_field, attribute_names)

        # Hazard zone categories from hazard layer
        self.hazard_zones = list(
            set(hazard_layer.get_data(hazard_zone_attribute)))

        self.buildings = {}
        self.affected_buildings = OrderedDict()
        for hazard_zone in self.hazard_zones:
            self.affected_buildings[hazard_zone] = {}

        # Run interpolation function for polygon2polygon
        interpolated_layer = assign_hazard_values_to_exposure_data(
            hazard_layer, exposure_layer, attribute_name=None)

        # Extract relevant interpolated data
        attribute_names = interpolated_layer.get_attribute_names()
        features = interpolated_layer.get_data()

        for i in range(len(features)):
            hazard_value = features[i][hazard_zone_attribute]
            if not hazard_value:
                hazard_value = not_affected_value
            features[i][target_field] = hazard_value
            usage = get_osm_building_usage(attribute_names, features[i])
            if usage is None:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.affected_buildings.keys():
                    self.affected_buildings[category][usage] = OrderedDict(
                        [(tr('Buildings Affected'), 0)])
            self.buildings[usage] += 1
            if hazard_value in self.affected_buildings.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        # Lump small entries and 'unknown' into 'other' category
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.generate_html_report()

        # Create style
        categories = self.hazard_zones
        categories.append(not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        i = 0
        for hazard_zone in self.hazard_zones:
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)
            i += 1

        # Override style info with new classes and name
        style_info = dict(target_field=target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by each hazard zone')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        impact_layer = Vector(
            data=features,
            projection=interpolated_layer.get_projection(),
            geometry=interpolated_layer.get_geometry(),
            name=tr('Buildings affected by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Ejemplo n.º 6
0
    def run(self):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :returns: Map of building exposed to each hazard zones.
                  Table with number of buildings affected
        :rtype: dict
        """
        self.validate()
        self.prepare()

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        # Try to get the value from keyword, if not exist, it will not fail,
        # but use the old get_osm_building_usage
        try:
            self.exposure_class_attribute = self.exposure.keyword(
                'structure_class_field')
        except KeywordNotFoundError:
            self.exposure_class_attribute = None

        hazard_zone_attribute_index = self.hazard.layer.fieldNameIndex(
            self.hazard_class_attribute)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute_index < 0:
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (self.hazard.layer.name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Hazard zone categories from hazard layer
        self.hazard_zones = self.hazard.layer.uniqueValues(
            hazard_zone_attribute_index)

        self.buildings = {}
        self.affected_buildings = OrderedDict()
        for hazard_zone in self.hazard_zones:
            self.affected_buildings[hazard_zone] = {}

        wgs84_extent = QgsRectangle(
            self.requested_extent[0], self.requested_extent[1],
            self.requested_extent[2], self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        attribute_names = [
            field.name() for field in interpolated_layer.pendingFields()]
        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            hazard_value = feature[self.hazard_class_attribute]
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            if (self.exposure_class_attribute and
                    self.exposure_class_attribute in attribute_names):
                usage = feature[self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, feature)

            if usage is None:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.affected_buildings.keys():
                    self.affected_buildings[category][usage] = OrderedDict(
                        [(tr('Buildings Affected'), 0)])
            self.buildings[usage] += 1
            if hazard_value in self.affected_buildings.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        # Lump small entries and 'unknown' into 'other' category
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.html_report()

        # Create style
        categories = self.hazard_zones
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        i = 0
        for hazard_zone in self.hazard_zones:
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)
            i += 1

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by each hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Vector(
            data=interpolated_layer,
            name=tr('Buildings affected by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Ejemplo n.º 7
0
    def run(self):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :returns: Impact vector layer building exposed to each hazard zones.
            Table with number of buildings affected
        :rtype: Vector
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step', 'Impact function is calculating the impact.')

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')
        # Try to get the value from keyword, if not exist, it will not fail,
        # but use the old get_osm_building_usage
        try:
            self.exposure_class_attribute = self.exposure.keyword(
                'structure_class_field')
        except KeywordNotFoundError:
            self.exposure_class_attribute = None

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Initialize OrderedDict of affected buildings
        self.affected_buildings = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                self.affected_buildings[vector_hazard_class['name']] = {}

        hazard_zone_attribute_index = self.hazard.layer.fieldNameIndex(
            self.hazard_class_attribute)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute_index < 0:
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (self.hazard.layer.name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Hazard zone categories from hazard layer
        unique_values = self.hazard.layer.uniqueValues(
            hazard_zone_attribute_index)
        # Values might be integer or float, we should have unicode. #2626
        self.hazard_zones = [get_unicode(val) for val in unique_values]

        self.buildings = {}

        wgs84_extent = QgsRectangle(self.requested_extent[0],
                                    self.requested_extent[1],
                                    self.requested_extent[2],
                                    self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        attribute_names = [
            field.name() for field in interpolated_layer.pendingFields()
        ]
        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            # Get the hazard value based on the value mapping in keyword
            hazard_value = get_key_for_value(
                feature[self.hazard_class_attribute],
                self.hazard_class_mapping)
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            if (self.exposure_class_attribute
                    and self.exposure_class_attribute in attribute_names):
                usage = feature[self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, feature)

            if usage is None:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.hazard_class_mapping.keys():
                    self.affected_buildings[category][usage] = OrderedDict([
                        (tr('Buildings Affected'), 0)
                    ])
            self.buildings[usage] += 1
            if hazard_value in self.hazard_class_mapping.keys():
                self.affected_buildings[hazard_value][usage][tr(
                    'Buildings Affected')] += 1

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        # Lump small entries and 'unknown' into 'other' category
        # Building threshold #2468
        postprocessors = self.parameters['postprocessors']
        building_postprocessors = postprocessors['BuildingType'][0]
        self.building_report_threshold = building_postprocessors.value[0].value
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.html_report()

        # Create style
        categories = self.affected_buildings.keys()
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        i = 0
        for hazard_zone in self.affected_buildings.keys():
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)
            i += 1

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by each hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Vector(
            data=interpolated_layer,
            name=tr('Buildings affected by each hazard zone'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Ejemplo n.º 8
0
    def run(self):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :returns: Impact vector layer building exposed to each hazard zones.
            Table with number of buildings affected
        :rtype: Vector
        """

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')
        self.exposure_class_attribute = self.exposure.keyword(
            'structure_class_field')
        try:
            exposure_value_mapping = self.exposure.keyword('value_mapping')
        except KeywordNotFoundError:
            # Generic IF, the keyword might not be defined base.py
            exposure_value_mapping = {}

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Iterate over vector hazard classes
        hazard_classes = []
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                hazard_classes.append(vector_hazard_class['name'])

        hazard_zone_attribute_index = self.hazard.layer.fieldNameIndex(
            self.hazard_class_attribute)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute_index < 0:
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (self.hazard.layer.name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Hazard zone categories from hazard layer
        unique_values = self.hazard.layer.uniqueValues(
            hazard_zone_attribute_index)
        # Values might be integer or float, we should have unicode. #2626
        self.hazard_zones = [get_unicode(val) for val in unique_values]

        self.init_report_var(hazard_classes)

        wgs84_extent = QgsRectangle(
            self.requested_extent[0], self.requested_extent[1],
            self.requested_extent[2], self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            # Get the hazard value based on the value mapping in keyword
            hazard_value = get_key_for_value(
                    feature[self.hazard_class_attribute],
                    self.hazard_class_mapping)
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            usage = feature[self.exposure_class_attribute]
            usage = main_type(usage, exposure_value_mapping)

            affected = False
            if hazard_value in self.hazard_class_mapping.keys():
                affected = True

            self.classify_feature(hazard_value, usage, affected)

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        self.reorder_dictionaries()

        # Create style
        categories = self.affected_buildings.keys()
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        for i, hazard_zone in enumerate(self.affected_buildings.keys()):
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=self.target_field,
            style_classes=style_classes,
            style_type='categorizedSymbol'
        )

        impact_data = self.generate_data()

        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title')
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Vector(
            data=interpolated_layer,
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Ejemplo n.º 9
0
    def run(self):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :returns: Impact vector layer building exposed to each hazard zones.
            Table with number of buildings affected
        :rtype: Vector
        """

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')
        self.exposure_class_attribute = self.exposure.keyword(
            'structure_class_field')
        try:
            exposure_value_mapping = self.exposure.keyword('value_mapping')
        except KeywordNotFoundError:
            # Generic IF, the keyword might not be defined base.py
            exposure_value_mapping = {}

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Iterate over vector hazard classes
        hazard_classes = []
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                hazard_classes.append(vector_hazard_class['name'])

        hazard_zone_attribute_index = self.hazard.layer.fieldNameIndex(
            self.hazard_class_attribute)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute_index < 0:
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (self.hazard.layer.name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Hazard zone categories from hazard layer
        unique_values = self.hazard.layer.uniqueValues(
            hazard_zone_attribute_index)
        # Values might be integer or float, we should have unicode. #2626
        self.hazard_zones = [get_unicode(val) for val in unique_values]

        self.init_report_var(hazard_classes)

        wgs84_extent = QgsRectangle(self.requested_extent[0],
                                    self.requested_extent[1],
                                    self.requested_extent[2],
                                    self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            # Get the hazard value based on the value mapping in keyword
            hazard_value = get_key_for_value(
                feature[self.hazard_class_attribute],
                self.hazard_class_mapping)
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            usage = feature[self.exposure_class_attribute]
            usage = main_type(usage, exposure_value_mapping)

            affected = False
            if hazard_value in self.hazard_class_mapping.keys():
                affected = True

            self.classify_feature(hazard_value, usage, affected)

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        self.reorder_dictionaries()

        # Create style
        categories = self.affected_buildings.keys()
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        for i, hazard_zone in enumerate(self.affected_buildings.keys()):
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        impact_data = self.generate_data()

        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title')
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Vector(data=interpolated_layer,
                              name=self.map_title(),
                              keywords=impact_layer_keywords,
                              style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Ejemplo n.º 10
0
    def run(self):
        """Risk plugin for classified polygon hazard on building/structure.

        Counts number of building exposed to each hazard zones.

        :returns: Impact vector layer building exposed to each hazard zones.
            Table with number of buildings affected
        :rtype: Vector
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step',
            'Impact function is calculating the impact.')

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')
        # Try to get the value from keyword, if not exist, it will not fail,
        # but use the old get_osm_building_usage
        try:
            self.exposure_class_attribute = self.exposure.keyword(
                'structure_class_field')
        except KeywordNotFoundError:
            self.exposure_class_attribute = None

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Initialize OrderedDict of affected buildings
        self.affected_buildings = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                self.affected_buildings[vector_hazard_class['name']] = {}

        hazard_zone_attribute_index = self.hazard.layer.fieldNameIndex(
            self.hazard_class_attribute)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute_index < 0:
            message = (
                'Hazard data %s does not contain expected attribute %s ' %
                (self.hazard.layer.name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Hazard zone categories from hazard layer
        unique_values = self.hazard.layer.uniqueValues(
            hazard_zone_attribute_index)
        # Values might be integer or float, we should have unicode. #2626
        self.hazard_zones = [get_unicode(val) for val in unique_values]

        self.buildings = {}

        wgs84_extent = QgsRectangle(
            self.requested_extent[0], self.requested_extent[1],
            self.requested_extent[2], self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        attribute_names = [
            field.name() for field in interpolated_layer.pendingFields()]
        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            # Get the hazard value based on the value mapping in keyword
            hazard_value = get_key_for_value(
                    feature[self.hazard_class_attribute],
                    self.hazard_class_mapping)
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            if (self.exposure_class_attribute and
                        self.exposure_class_attribute in attribute_names):
                usage = feature[self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, feature)

            if usage is None:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.hazard_class_mapping.keys():
                    self.affected_buildings[category][usage] = OrderedDict(
                        [(tr('Buildings Affected'), 0)])
            self.buildings[usage] += 1
            if hazard_value in self.hazard_class_mapping.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        # Lump small entries and 'unknown' into 'other' category
        # Building threshold #2468
        postprocessors = self.parameters['postprocessors']
        building_postprocessors = postprocessors['BuildingType'][0]
        self.building_report_threshold = building_postprocessors.value[0].value
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.html_report()

        # Create style
        categories = self.affected_buildings.keys()
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        i = 0
        for hazard_zone in self.affected_buildings.keys():
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)
            i += 1

        # Override style info with new classes and name
        style_info = dict(
            target_field=self.target_field,
            style_classes=style_classes,
            style_type='categorizedSymbol'
        )

        # For printing map purpose
        map_title = tr('Buildings affected by each hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Vector(
            data=interpolated_layer,
            name=tr('Buildings affected by each hazard zone'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer